
THE ML/I MACRO PROCESSOR

ML/T user's manual

P.J. Brown

University of Kent at Canterbury

Fourth edition, August 1970

Reprintedé January 1972, July 1974, March 1977,

(<) P.7, Brown

Preface

This manual describes ML/I in full detail with examples of
its applications. It is not assumed that the reader has any
previous knowledge of macro processors.

A shorter, simpler, document describing ML/1 is also avail-~
ble. This is callec "The ML/I macro processor: a simple
introductory guide". A paper descrihing how i’L/I is implemented
appeared in Communications of the AC: 13, 12 (Dec. 1972), po. 1059 ~
1062; the book Macro processors and portable software (J. “iley,
1974) contains further details.

Preface to the Fourth Frition

The Fourth Edition of the “L/I User's “‘tanual conteins few
significant chanqes over the Third “dition. The only additions
are lavout kevwords (including the SPACES keyword) and system
variai:les. As well as these additions certain corrections and
chances of format have been mace. In particular it is assumec
in this Edition that newline, not semicolon, is the closing deli-
miter for operation macros, since vractice has shown that this is
the best choice.

hL/I has remained in a stable state for some time, and there
are no current plans to make extensive changes. In fact the current
MmL/I is really '1%/IT since it is the end product of a series of im-
provements to the original 1£66 version; it has not, however, heen
renamed,

ML/I- USER'S. MANUAL

Table of contents

Chapter 1 Introduction

1.1 General description
1.2 Organisation cf the manual
1.3 Notation for describing syntax
1.4 Further points of notation
1.5 Improving ML/TI

Chapter 2 The Environment and its constituents

Zel Basic action of ML/T
2.2 Character set
203 Text
2.4 Macros and delimiter structures

2.4.1 Examples of macros
2.4.2 Delimiter structures
2.4.3 Optional and repeated delimiters
2.4.4. Macro definitions

2.4.5 The difference between macros and subroutines
2.4.6 Impossible replacements

zZ2.5 Introduction to macro~time variables and statements
2.6 Inserts

2.6.1 wWacro variables
2.6.2 Initialization of macro variabies
2.6.3 Subscripts and macro expressions
2.6.4 Integer overflow
2.6.5 Macro labels
2.6.6 Macro elements
2.6.7 Insert definitions
2.6.& Examples of inserts

2.7 Skips
2.7.1 Matched skips and straight skips
2.7.2 Uiteral brackets
2.7.3 Uxample of a matched skip

Continued:

Warning markers
Summary of the environment
Wormal-scan macros and straight-scan macros
Name environment used for examples

Text Scanning and evaluation

Chapter 4

Nesting and recursion
Call by name
Details of the scanning process
fhe methcd of searching for delimiters
Exclusive delimiters
Dynamically generated constructions

Opera ation macros and their use in setting up the
environment

HCNOWARN, HCNOINS, MCNOSKIP and MCNODEF
MCWARNG, MCINSG, MCSKIPG and MCDEFG

a

4.1 Operation macros

4.2 Use of literal brackets for surrounding operation
macro arguments

4.3 NEC macros
&.G* Dynanic aspects of the environment
4.5% Protected and unprotected inserts
&.6* Ambiguous use of names
4a.7* Implications of rules for name clashes

Chapter 5 Specifications of individual operation macros

5.1 Specification cf delimiter structures
5.1.1 Keywords
5.1.2 whe consequences of valuation
5.1.3* Introduction to more complicated cases
5.1.4* Full syntax of structure representations
5.1.5* gxamples of complex structure representations

i. 5.1.6 Possible errors in structure representations
5.2 The NEC macros

& 5.2.1 MCWARN

5.2.2 MCINS
5.2.3 MCSKIP
5.2.4 MCDEF
5.205
5.2.6
5.267 e

s
cs

MCALTER

continued:

System functions

5.3.1 MCLENG
5.3.2 MCSUB

5.4 Purther operation macros
5.4.1 MCSET
5.24.2 MCNOTE
5.423 HCGO

5.4.3.1*% &xact description of a GO TO
5.4.4 MCPVAR

Chapter 6 Error messages

a. Examples of an erxor message
5.2 Notes on context print-outs
6.3 Complete list of messages

6.3.1 ~ 6.3.13 Description of individual messages

Chupter 7 Hints on using ML/T

7.1 Yow to set up the environment
7.2 Possible souxces of error

7.2.1 Gumping over expanded code
7.a.2 Generation of unigue labels
7.2.3 Lower case letters
7.2.4 Use of newlines in dexinitions
7.2.5 Use of redundant gpaces

7.3 Simple techniques
7.3.1 Interchanging two names
7.3.2 Removing optional debugging statements
7.3.3 Inserting extra debugging statements
7.3.4 Deleting a macro
7.3.5 ifferentiation between special-purpose

registers and stcrage locations
7.3.6 Testing for macro caiis
7.3.% Searching
7.3.8 xracketing within macro expressions
7.3.9 peletion from source text only

7.4 Sophisticated techniques
7.4.1 Macro~time loop
7.3.2 Examining optional delimiters
7.4.3 Dynamically constructed calls
7.4.4 Arithmetic expression macro
7.4.5 Forral parameter names
7.4.6 Intercepting changes of state
7.4.7 Remembering code for subsequent insertion
7.4.8 Constructions with restricted scopes
7.4.39 Optimizing macro~generated code
7.4.10 Macro to create a macro

1/l

Chapter 1 Introduction

1.1 General description

ML/I is a general macro processor. It is general in the
sense that it can be used to process any kind of text. The text
may be in any programming language or natural language, or it
may be numerical data. The most important use of ML/I is to
provide the user with a simple means of adding extra statements
(or other syntactic forms) to an existing programming language
in order to make the language more suitable for his own field
of application. This process of extension may be carried to
the level where the extended language could be regarded as a
new language in its own right. Other uses of ML/I are program
paramaterization (e.g. a parameter might determine whether de-
bugging statements are to be included in a program) and various
applications in text editing or correction ard data format
conversion. ML/I is also suitable for use as the final pass
of a compiler.

This manual does not assume the reader has any previous
expericnce of macro processors. However, the reader who is.
familiar with macro processors might be interested in knowing
the main features of ML/I before plunging into details. These
features are:

(a) Macros with a variable number of arguments.
{(b) Delimiters of the arguments of each macro are chosen

by the user, ana a macro may have several possible
patterns of delimiters, each with a different meaning.

(c) Macro-time integer variables. ¢
(d) Macro-time assignment and GO TO statements.
(e) No restrictions on nesting and recursion.
(£) Macro calls occurring anywhere in the text (i.e.

calls do not have to appear in a particular field,
nor do they have to be preceded by a “warning
marker").

(g) Comprehensive error messages.

1.2 Organisation of the manual

Chapters 2, 3, 4 and@’5 of this manual describe ML/I in
full detail. Chapter 6 Gescribes error messages and Cnapter
7 contains hints and examples. ‘The reader may find it useful
to look ahead to the examples in Chapter 7 if he has ditficulty
with the main text. Some Sections of this manual can be omitted

1/2

on a first reading and these are marked with an asterisk.

this manual does not describe features of ML/I that are
implementation-dependent, e.g. operating instructions, character
set, etc. Instead there is an Appendix which describes the
implementation~dependent features for gach implementation.
Thus Appendix A describes the PDP-7 implementation, Appendix .
B the Titan one, etc. These Appendices are available separately.

A few features of ML/I as described in this manual may
not be present in some implementations. In addition some
implementations may include extra features. See Section 1 of
the relevant Appendix for details.

1.3 Notation for describing syntax

The notation used to describe syntax should be self-explanatory.
An example of its use is the following description of a hypothetical
IF statement:

IF condition THEN statement;

As can be seen, a syntactic form is defined by concatenating
its constituents. A constituent that is itself the name of a
syntactic form is underlined. The remaining constituents are
literals.

A notation borrowed from Brooker and Morris is used to
indicate parts of syntactic forms that may optionally be repeated
and/or omitted. In this notation a constituent or series of
constituents that may optionally be omitted is written:

[constituents ?]

Constituents that may be repeated any desired number of
times are written:

Pr soustituents *]

and constituents that may be omitted or repeated are written:

T constituents *?]

1/3

Thus if the above IF statement had an optional £LSE clause, it

would be written

IF condition THEM statement [ELSE statement ?] ;

and a hypothetical SUM statement which permitted any number of

arguments, provided there were at least two, might be defineds

SUM argument [,argument *] ;

Lastly, when there are several alternative forms for a

constituent, these are written:

(form 1)
(form 2)

(.)
(3:)
(form WN)

Thus an expression might be defined as:

variable [(P variable*?]

(x)
(/)

Wote that the asterisk means that the syntactic forms enclosed
within the brackets may be repeated; it is not required that
identical text be written at each repetition.

1.4 Further points of notation

(a) When it is desired to emphasize the presence of a
space, tab or newline in a piece of text, this is done
by writing SPACE, TAB or NL, respectively. Wote that this
is simply a point of notation and the reader should be
careful not to interpret an occurrence of, say, NL in
a specification as requiring that he write ‘'N' and 'L'
ana@ underline them.

(b) An integer is said to be positive only if it is greater
than zero, and negative only if it is less than zero.
Integers in ML/I are represented to a decimal base.

(c) When it is necessarv to emnhasize that a zero is not the

letter “Oh”, the zero is crossed, e.a, A. Zeroes are not
crossed, however, where the context makes jt ahviones that

a zero is meant. ,

1/4

1.5 Improving ML/1I

invited to criticize and suggest improvements

in the description in this manual

or in a particular implementation, and in particular to point out

errors and ampiguities. Reports of implementation errors should

be accompanied by enough material to reproduce the error and, if

applicable, references to the statements in this manual that have

been contravened.

Readers are

in the specification of ML/I,

2/1

Chapter 2 ‘The environment and its constituents
wt

2.1 3asic action of ML/I

The basic accion of liL/I is as follows. ‘Yvhe user feeds to
ML/I some text and an environment. The purpose of the. environment
is to specify that certain insertions, deletions, expansions,
translations or other modifications are to be made in the text.
liL/I performs the textual changes specified by the user. This
nrocess is called evaluation of text, and the text cenerated as a
result of the changes is called the value text. The text being
evaluatec is called the scanned text. In many simple applications
of iiL/I, the process of evaluation consists of a cood deal of
straignt cepying, the value being cne same as the original, but
periodically a change is mace and the generated value text is
different from the original scannea text.

The purpose of this Chapter is to explain the mecnanisms at
the disposal of the user and to give examples of tneir use. All
the possible constituents of the environment will be described
and the resultant textual changes will be explained by dcescribing
the form_of the scanned text and the form of the corresponding
value in eacn case. The mechanisms for setting up the environment
will be explained in subsequent Chapters.

2.2 Character set

The cuaracter set of iiL/I, i.e. the set o¢ allowable characters
in the text it processes, is inplementation-defined (see Section
3 cf relevant Appendix). However, the character set will normally
contain a primary (upper case) set of letters A - Z, the numbers 0 - 9,
and a number of characters that are not letters or numbers. Characters
that are not letters or numbers are called punctuation characters.
(If input is from cards the characters tab and newline will not
normally physically exist as characters on the cards. However the
input routine may artificially add the character “newline” at the
end of each line and might possibly have sore arrangement for
inserting tabs as well. see Section 3 of relevant Appendix for
Getails.) If an implementation contains both upper and lower case
letters in its cnarecter set, tnen tuese are treated as entirely
different sets of characters and it is not possible to use a dower |
case letter interchangeably wlth its upper case equivalent.

2.3 Text

A feature of ML/I is that it does not consider text
character by character but in units of atoms. aAn atom is a single
punctuation character or a seyuence of letters and digits that
is surrounded by punctuation characters (assuming an imaginary
punctuation character at the beginning and end of the text).
There is no restriction on the length of an atom. To take an
example, the texts

PIG , TAB LAC SPACE 4057

i 2 3 4 5 6

would be regarded as six atoms as shown.

fhe following definitions will be used in tne rest of this
manual. ‘Yext is a (possibly nuil) sequence of atoms. The source
text is the text supplied as input to ML/I, and the output text is
the text derived from evaluating the source text. The physical
form of the source text and output text is implementation-defined
{see Section 2 of relevant Appendix). The acticn of evaluating
a particular piece of source text is called a process.

2.4 Macros and delimiter structures

Before defining a macro it may be useful to consider the
sort of text replacement that macros are designed to achieve.
PDP-7 Assembly Language will be taken as an example (nut it will 4

not be assumed the reader is necessarily familiar with this language).
Assume the user wishes to intrceduce a new instruction of form:

“eSUB xX meaning “subtract K from the accumulator”.

Now this instruction is not in the PDP-7 instruction set but its
effect can pe achieved by the three instructions:

CMA complement accumulator.
ADD X add kK to accumulator.
CMA complement accumulator.

2/3

ee introduction of ESUB would be achieved z= Follows. ‘She user
wouid write his program as if EKGUB were an extra wachine instruction.
Before the program was assenoled it would be passed througn iiL/?
with ESUB defined as a macro name with the abeve three instcuctions
as its replacement text. ai/I would replace eech occurrence of
ESUL by its expanded forr, and the resultant cutput text could then
be assembled normally. Wacn piece of text to be replaced is called
&@ macro cali and the text corresponding to X awove is called the
argument of the call. (Within the replacement text of ESuB it i
necessary to specify that the argument of the call snould be inserted
lamediately after ADD. This is done by a constituent of the
environment called an “insert”, whicn will be described iater.)

this example serves as a simple illustration of the primary
use of iiL/I, namely te serve ag a preprocessor to an @xistinyg picece
of software to ailow the user to introduce new statements of his orn
design into the existing language. Hach new atatement must be
expaniible in terms of the existing language.

Macres may have any number of arguments. Arguments are
seperated by predefined atoms or sequences of atoms callad selimiters.
When defining a macro, the user specifies what tie delimiters are.
the macco name is regarded as a delimiter and is called the name
delimicer to distinguish it from tne remaining delimiters, whien
are called socondary celimiters. The delisiter following the last
arjyument of the call is called the closing delimiter. wae general
form Of & macre cail can, therefore, be represented as:

name delimiter [argument secondary delimiter * ?]

Arguments may be nuli but delimiters mugt consist of at least
ong atom.

Every time ML/I encounters in the scanned text an atom or
series or atoms that has been defined as a macro name, Lt searches
for tne secondary delimiters (if any) and then replaces the entire
macro call by the value of the replacement texc for the macro. “ors
detaiis of tie way macro calls are scanned are given in Sections
3.3 and 3.4.

2.4.1 bxamples of macros

It may bo instructive at this stage to vonsider a few more

2/4

examples of macros. These examples, which are listed below, are
all of simple macros with fixed delimiters. wuacros with more
elaborate patterns of delimiters will be considered later. Wote
that ML/I could be used to add these macros to any desired proyramning
language, whether high or low level.

Example 1 A macro to generate a loap, which has form

DO arg A TIMES arg B REPEAT

Here the delimiters are DO, TIMES and REPEAT. DO is
the name delimiter, and TIMES and REPEAT are secondary
delimiters. REPEAT is the closing delimiter. ‘“ML/I —
does not require that macro calls be written on a
single line, and calls of this macro would tend, in
practice, to span several lines of text.

Example 2 A macro of form

MOVEe FROM arg A TO arg B;

The name of this macro consists of the two atoms

"MOVE FROM”.

Example 3 A macro to interchange two variables, which has form

INTERCHANGE (arg A, arg B) NL

In this example both the name and the closing delimiter
consist of more than one atom. Wote that HL/I does
not, like some software, truncate long names such as
"INTERCHANGE".

Example 4 Assume that within a program two different names,
COUNT and COUNT, have inadvertently been used for the
same variable. Then this error could be corrected
usiny ML/I with CONT defined as a macro with COUNT
as its replacement text. Here the name delimiter,
CONT, is also the closing delimiter.

2/5

The reader should, at this stage. appreciate why ML/I
considers text as a sequence of atoms rather than a sequence of
individual characters. If the latter were the case, ML/I would
be liable to take names such as DOG and KANDOM as calls of the
above macro DO since each name contains the letters "DO". As the
situation stands, however, the letters "DO" would only be taken as
a macro call if they were surrounded by punctuation characters,

2.4.2 Delimiter structures

The macros considered so far have had fixed delimiters.
However, it is possible to have macros with any number of alternative
patterns of delimiters. As a very Simple example of this consider
the ESUB macro. In PDP-7 Assembly Language statements are terminated
with either a tab or a newline, and so it would be desirable

to allow both of these as alternatives for the closing delimiter
of ESUB.

In order to specify the patterns of possible delimiters
of a macro the user specifies a delimiter structure. Each macro
has its own delimiter structure and other constituents of the
environnent also have delimiter structures. A delimiter structure
is a set of delimiter specifications, each of which is a sequence
of one or more atoms. These seyuences of atoms need not be distinct.
One or more of these delimiter specifications are designated
as names of the structure. The remainder are secondary delimiters.
With each delimiter specification is associated a specification
of its successor(s). This may be

(a) null,

or (6b) another delimiter specification within the
structure,

or (c) a set of alternative delimiter specifications
within the structure,

Successors specify what to search for next when scanning. A
delimiter with a null successor is a closing delimiter. As an
illustration of the use of a delimiter structure consider the
scanning of a macro call. During this scanning, each time a
delimiter is found, the delimiter structure of the macro being
calied is referenced to find the successor(s) of the current
delimiter and subsequent text is then scanned to try to find this
successor. This process continues until a closing delimiter is
found.

2/6

As an example of a delimiter structure, the delimiter structure

of the ESUB macro would contain three delimiter specifications with

the following information about them:

(a) ESUB name with (b) or (c) as its successor.

(b) TAB secondary delimiter with no successor.

(c) AL secondary delimiter with no successor.

The rules for setting up delimiter structures (see Section

5.1) ensure that they have certain properties. Among these properties

are the foliowing:

(a) If there is more than one name each name is represented

by a different sequence of atoms.

(b) If a delimiter specification has alternative successors

each is represented by a different sequence of atoms.

(c) The structure is connected. This means that it must be

possible to reach each secondary delimiter by a sequence

of successors from some name.

2.4.3 Optional and repeated delimiters

It is possible, by designing a suitable delimiter structure,

to have a macro with a variable number of arguments, in particular

a macro with optional arguments and/or with an indefinitely long

list of arguments. For instance, suppose it is desired to implement

a macro with alternative forms:

IF argument THEN argument

END

and IF argument THEN argument

ELSE argument

EWD

This is done by specifying that either ELS: or END is the successor

of THEN. END is a closing delimiter and ELSE has successor END.

2/7

As a second GChample c-onsiger a macrc of form:

SUM argument [| a arguinent* ?]

This macro nas an indefinite number of arguments, separated by
plus or minus signs. Its delimiter structure has four members
as follows:

(a) SUM name with (b), (c) or (d) as successor.

(b) + secondary delimiter with (b), (c) or (d) as
successor,

(c) - secondary delimiter with (b), (c) or (d) as
successor.

(d) ; secondary delimiter with no successor.

2.4.4 Macro definitions

Now that the basic concepts behind macros have been introduced,
it is possible to explain more exactly what makes up a macro
definition. Macro definitions are the most important constituents
of the environment. A macro definition consists of:

(a) A delimiter structure. The name delimiter(s) of this
structure are the macro names.

(b) A piece of replacement text.

(c) An integer exceeding two called the capacity, the
purpose of which is explained in Section 2.6.1.

(d) An on/off option. If this option is on, a macro
is called a normal-scan macro. Otherwise it is called
a straight-scan macro. The effect of this option is
explained in Section 2.10.

The reader need not for the moment concern himself with (c)
and (d) since nearly all macros will be normal-scan and will have
capacity three.

2.4.5 The difference between macros and subroutines

There is often confusion between the purpose of macros and

2/8

the purpose of subroutines. Macros, Nvwever, always generate
in-line code and so this cede is inserted as many times as the
macro is called. Subroutines use out~-of-lins code and there
is only one copy of this ccde for a particular pregran. Thus
macros are used only when the code to be inserted is short or
highly parameterized. I+ would not be convenient, for instance,
to use subroutines to perform the functions of any of the macros
used as examples in previous Sections.

2.4.6 Impossible replacements

It is worth noting some of the types of replacement that
it is not possible to perform by means of macros. Below are two
examples of illegal syntax of macro calls, together with possible
correct forms.

(a) Wrong arg A = arg B; Since @ach macro call must
Start with a macro name.

Right SET arg A = arg B ;

(b) Wrong $ character It is not possible to define
an argument as the character
(or atom) immediately following
a given name. Every argument
must be followed by some pre-
defined delimiter.

Right $ argument ;

2.5 Introduction to macro-time varlables and statements

The form of the value of a call of such macros as the IF
and SUM macros used earlier as examples would have to depend
on the particular patterns of delimiters that were used in the
call. For instance:

SUM ALPHA + BETA ;

must generate an entirely different set of instructions from:

SUM ALPHA - BETA - GAMMA + X + ¥ ~-@;

and, in the case of IF, the form of the value text must depend

2/9

upon whether ELSE was-present. Macros such as these, therefore,
are morc complicated than the ESUB case, where a fixed skeleton
of code consisting of three machine instructions is substituted
for each call. The only variasle eleient in the ESUB case is the
form of its argument. In the more complicated cases, where the
delimiters provide a second variable element, the user has to
write a little program which is executed by ML/I and tests the form
of the delimiters used and generates code accordingly. In the
case of SUM, which has an indefinitely long list of arguments
and delimiters, this program would involve a simple repetitive
loop to iterate through the list. Hence ML/I contains an elementary
programming language of its own. This language contains an assignment

“ statement, a conditional GO TO statement, labels and integer.
variables. All these are called macro-time entities to distinguish
them from the corresponding execution-time entities, and the reader
must be careful not to confuse the two. The difference is illustrated
thus: the DO macro of Section 2.4.1 would generate a loop which
was performed at execution-time and controlled oy an execution-
time variable; on the other hand the value text for the SUM macro
would be cenerated by a macro-tine loop controlled vy a macro~
time variable.

Macro variables and macro labels are considered in the next
Section. Macro~time statements are considered in detail in Chapter
4.

2.6 Inserts

This Section describes now quantities can be inserted into
text. In particular it describes how arguments oi macro calls
are inserted into replacement text. However, first it is neccessary
to consider some of tne quantities, in addition to arguments,
that may be inserted into text.

2.6.1 Macro variables

Macro variables are integer variabies available to the user
at macro-time. ML/I contains facilities for performing arithmetic
on these variables, testing their values, and inserting their
values into the text. They are useful as switches and for counting
(e.g. in processing macros with a variable number of arguments).

2/10

There are three kinds of macro variable, namely:

(a) permanent variables, referred to as Pl, P2,....

(b) system variables, referred to as S1, S2,....

(c) temporary variables, referred to as Tl, T2,....

Permanent and system variabies have global scope; this
means they can be referred to anywhere. An implementation-defined
number of each is aliocated at the start of each process and
these remain in existence turoughout. The user may allocate
extra permanent variables (but not system variables) if he likes
(see Section 5.4.4). The difference between permanent and system
variables is that the former have no fixed meanings and are free
for the user to use as he wishes, out the latter have fixed
implementation-defined meanings associated with controlling
the operation of ML/I. For example in a given implementation
S20 might control the listing of the source text; if it was zero
no listing would be produced and if it was one there would he
a listing. Sections 5 and 7 of each Appendix describe the meanings
of system variables (if any) and state the number of permanent
and system variables that are initially allocated.

Temporary variables, on the other hand, have a more local
scope. During the evaluation of the source text there are no
temporary variables in existence. However, each time a macro call
is made a number of temporary variables is allocated and these
remain in existence while the replacement text of the macro is
being evaluated. The number of temporary variables allocated at
the call of a macro is given by the capacity of tne macro (see
Section 2.4.4). The capacity is usually three. If temporary
variable N is referenced during the evaluation of the replacement
text of a macro call, this is taken to mean the Nth temporary
variable associated with the call. Since, as will be seen later,
it is possible to have macro calls within macro calls, it is
possible to have several allocations of temporary variables in
existence at the same time.

2.6.2 Initialization of macro variables

The initial values of all macro variables are undefined
except for the values of the first three temporary variables of
each allocation, which are initialized as follows:

2/11

Tl ‘the number of arguments of the current macro call;

T2 the number of macro calls so far performed by ML/I
during the current process. The importance of this
number is that it is unique to the current call;

v3 the current depth of nesting of macro calls (i.e.
the number of calls, including the present one, currently
being processed; calls of operation macros (see Section
4.1) are not counted here, though they do count toward
the setting of T2). ;

It is to be emphasized that these are initial values and
the user is free to change them if ne wishes. (In this way
temporary variables are unlike system variables. If the values
of system variables, even those without assigned meanings, were
changed arbitrarily it might have a tragic effect.)

2.6.3 Subscripts and macro expressions

In the previous Sections macro variables were specified
by a letter followed sy a number (e.g. P2), but there are other
possibilities. The general form of a macro variable is:

(P)
(S) subscript
(T)

where a subscript is an unsigned pcsitive intecer or a macro
variable. The value of the subscript specifies the macro variable

to be reiverenced. Thus if T3 has value 4, then PT3 would specify
P4, As a more complicated example, if Tl had value 2 and P2
had value 6, then TPT1 would specify the sixth temporary variable.

Macro variables can be combined into macro expressions,
which are used when it is desired to perform aritnmetic calculations
during macro generation. Examples of macro expressions ares

1, ~G, 3°Sl, -TT1-145/P24+P3+6

Multiplication is represented by an asterisk. The general form

of a macro expression is:

2/12

primary in “
a
e

primary * ?]

f
+

o
N
,

a
e

e
e

e
e
e

wnere a primary has form:

{ (+) * 2] operand
(-)

where an operand is an unsigned integer or a macro variable.

Redundant spaces can occur anywhere in macro expressions except

within operands.

The result of a macro expression is the integer derived

from calculating the expression by the ordinary rules of arithmetic.

Unary operators are performed first, followed by the binary
operators from left to right with the proviso that multiplication
and division take precedence over addition and subtraction.

Division is truncated to the greatest integer that does not exceed

the exact result. Division by zero is detected as an error.

Examples aré:

(a) L+2 * 3 has result 7.

(b} 3 * 7/8 has result 2.

(c) 7/8 * 3 has result O.

(d) -~ 5/4 and 5/-4 both have result -2.

(c) 7 4/-3 * -6 has result - 6.

2.6.4 Integer overflow

Each implementation has a maximum absolute value which
must not be exceeded by any integer derivec during the calculation

of a macro expression or subscript. The effect of exceeding this
value is implementation-defined. See Section 5 of the relevant

Appendix for details.

2.6.5 Macro labels

Since there is a facility for a macro-time GO TO, there
is also a facility for placing macro~time labels. These are
called macro labels. Eacn macro label is designated by a unique

positive integer.

2.6.6 tiacro elements

Macro variables, macro labels, arguments and delimiters
are collectively called macro elements. It is convenient to regard
macro elements aS part of the environment. The full details of
how macro elements are added tc tne environment are explained
in Section 4.4, but in essence the rule is that every time a
macro is called its arguments and delimiters plus a set of temporary
variables are automatically added to the environment and this
supplemented environment is used to evaluate the replacement
text of the call. Similarly when a macro label is encountered
its position is "remembered" by adding it to the environment.

2.6.7 Insert definitions

It is now possible to define the constituent of the
environment, called an insert definition, which is used for
such purposes as to tell ML/I to insert a particular argument
of a macro at some point in its replacement text. An insert
definition consists of:

(a) A delimiter structure. Since all inserts have fixed
delimiters and exactly one argument, this delimiter
structure will be a simple one. It will consist of
aname with a single successor, this successor being
a closing delimiter.

(b) An on/off option. If this option is on, an insert
is calied protected; otherwise it is called unprotected.
The use of this option, which need not be of much
concern to the average reader, is described in Section
4.5,

At each point where the user wishes something to be inserted
he writes the following construction, called an insert:

insert name argument delimiter

In the rest of this manual, for the purpose of examples, it will
be assumed that the atom "%" is an insert name, with the atom "."
as its closing delimiter. With this assumption the following are

© 2/lp

examples of inserts (the exact meaning of these will become apparent
later) :

“@h6. BPl. 8bT2, SWA P9-16*T3,

On encountering an insert, ML/I evaluates the argument of
the insert {in case it contains macro calls, etc.) and the resulting
value text acts as a specification of what to insert. The value
text must consist of a flag followed by a macro expression. In
the first above example the flag would be A and the macro expression
would be 6. The flag may be null or it may be any of the following:
A, B,D, L,WA, WB or WD. Any number of redundant spaces is allowed
before, after or within a flag.

The meaning of the various flags are explained below, In
each explanation "N" is used to represent the value of the macro
expression following the flag. wiore examples are given in the next
Section. An attempt to insert something which does not exist
(e.g. the third argument of a macro with only two arguments) results
in an error. ‘The meanings of the flags are:

(a) A. This flag is used within the replacement text of a
macro to evaluate and insert the Nth argument of a call
of the macro. Any spaces at the beginning or end of
the argument are deleted before it is evaluated. In
the case of this flag and in cases (b) and (c) below
the piece of text that is evaluated and inserted is
calied the inserted text.

(bi B. As case (a) except that Spaces are not deleted.

(c) D. As case (b) except that the wth delimiter, rather
than the Wth argument, is inserted. The name of a
macro is considered as delimiter zero, and the Nth
delimiter is thus the delimiter following the Nth
argument.

(d) WA, WB, WD. As cases (a) to (c), respectively, except
that the inserted text is not evaluated but is inserted
literally, exactly as written. ('W' stands for “written".)
The difference between this and the previous cases arises
if the inserted text itself involves macro calls, inserts,
etc. In the previous cases these are evaluated; in
this case they are not.

(£)

2/15

Null. The nunericak valne of N, represented as a

character string, is inserted. This character string
contains no redundant leading zeres. It is preceded
by a minus sign if N is negative; otherwise no sign
is present.

L. This is used to place a macro label and is rather
different from the above cases in that nothing is
inserted (i.e. the value of the insert is null). The
label N is, if acceptable, added to the current

environment and may be the subject of a macro-time
GO TO. A macro label is acceptable if it is inserted
within a piece of replacement text or inserted text
and has not already been defined within that tert.
It is legal to insert a label in the source text but
Since, as will be seen later, it is not possible to
have a backward GO TO within the scurce text, such
iaveis are not added to the environment (i.e. they
are "“forgotten”). wacro labels are local to the
piece of text in which they occur, and there is no
harm in using the same label numbers within different
pieces of text. Label numbers can be chosen arbitrarily,
except that they must be positive.

2.6.8 Examples of inserts

Tne following examoles illustrate the use of inserts: g is

(a) The replacement text of the ESUB macro of Section 2.4
iight ve written:

CHA
ADD . SAL.

CHA NL

or even:

CeiA

ADD SAL.

CMA SD1.

The latter form would have the advantage of inserting

(b)

(c)

(d)

(e)

2/16 ~

newline or tab according to which one was written
am tne call.

In the case of the DO macro of Section 2.4.1 the
replacement text would involve an execution-time
label. It is imperative that a different execution-
time label be generated for each call of DO. This
could be achieved by using the initial value of ‘T2.
The label could, for example, be written:

ZZ%T2.

In this case if two successive calls of DO occurred

at the start of the source text then 221 would he

generated at the first call and 422 at the second.

Tf SWITCH is a macro name with replacement text Pl,
then it is possible to write:

SSWITCH ,

to insert the first permanent variable. The reason
is that the argument of an insert is evaluated before
being processed and the call of the SWITCH macro would
be performed during this evaluation.

The occurrence of Al. in the replacement text of
the macro call:

HOVE FROM JACK TO JOHN;

would cause JACK to be inserted, whereas the occurrence:

of Bl. would cause JACK enclosed in spaces to be

inserted.

If it is desired to insert the name of a macro into
its replacement text this can be done by writing
"swog." (The reason for having this facility is
that macros can have several alternative names.)
In general it would be wrong to use %D¢@. instead,
since this form causes any macro calls within the
delimiter to be performed. But delimiter zero is
the macro name itself and hence an endless recursive

2/17

loop is likely... In-£act when inserting delimiters
it is usually better to use a "W".

(f£) This example rather jumps the gun in that it uses
the macro~time statements MCSET and MCGO wnich have
not yet been defined. However, if the reader cares
to try to understand tnis example at this stage it may
give a useful insight into the purpose of the preceding
material. Yue example shows how the replacement
text of the SUM macro could be written. (The comments
at the side are for the reader's benefit and do not
form part of the replacement text.)

LAC $Al. Generate code to load
accumulator with first
argument.

MCSET T2 = 1 Use T2 as loop counter.

@L4.MCGO L1 IF$DT2. = + Test if current delimiter
is plus

McGO L2 LFSDT2. = ~ or Minus.

MCGO Lg If neither then exit. (L@
has a special meaning, namely
“return”.)

3L2. ESUB %AT2+1. Generate code to subtract

current argument.

McGC L3

$L1. ADD %AT2+1. Generate code to add current
argument.

%L3. MCSET T2 = T2+1 Increase T2 and continue loop.

MCGO L4

2.7 Skips

The description so far has implied that every occurrence

of a macro name in the scanned text is taken as the start of a

2/18

macro call. This would mean that the user had no easy means of
getting macro names or, for that matter, insert names into his value
text. Moreover, if he were unfortunate enough to use a macro name
in his comments, then ML/I would take this as a macro call and
would start searching for delimiters. To get round these difficulties
the user places skip definitions in his environment, and by this
means can cause ML/I to ignore comments and to take certain strings
as literals.

A skip definition consists of:

(a) A delimiter structure. The names of this structure
are called skip names.

(b) Three on/off options. These options are: the text
option, the delimiter option and the matched option.

The action of ML/I on finding a skip name is similar to the
action on finding a macro name. In both cases a search for
delimiters is made until a closing delimiter is found. The text
from the skip name to its closing delimiter is called a skip.
A skip, therefore, has forms:

skip name [argument secondary delimiter *?]

In most practical applications of skips there will be exactly
one argument. The arguments cf skips are treated as literals,
exactly as if all macro definitions, insert definitions and warning
markers (see later) had been temporarily removed from the environment
during the scanning of the skip. There is no replacement text
associated with a skip; instead the value of a skip is defined
simply by the setting of two of its options. These options, which
are independent of one another, have the following effect:

(a) If the delimiter option is on, then the delimiters of
the skip are copied over to the value text, otherwise
they are not,

(b) If the text option is on, then the arguments of the
skip are copied over to the value text; otherwise
they are not.

2/19

AS an example of the use of a skip assume the source text
contains comments that Deygin with the word COMMENT and end with
a semicolon. ‘In order to skip these comments the user would define
COMMENT as a skip name with semicolon as its closing delimiter.
In this case if the following comment occurred:

COMMENT THIS DO LOOP ZHROIZES ARRAY X;

then its value (i.e. the piece of text copied over to the value
text) would be one of the following:

(a) If both options were on, its value would be:

COMMENT THIS DO LOOP ZERIOZES ARRAY Xj

(2) If neither option was on its value would be null.

(c) If only the delimiter option was on its value would
be:

COMMENT ;

{d) If only the text option was on then its value would |
bes

THIS DO LOOP ZERIOZHS ARRAY X

If COMUENT was not defined as a skip at all then comments
would normally be copied over to the value text as in case (a).
However, if in the above example DO was a macro name then ML/I
would try to find the delimiters of DO and replace the call of
DO oy its replacement text. This is clearly undesirable. The
chances are the entire source text would be scanned without finding
the required delimiters. Hence the use of skips to inhibit the
recognition of macro names within certain contexts.

tt will be assumed in the rest of this manual that COMMENT
is a skip name with semicolon as its closing delimiter.

2.7.1 Matched skips and straight skips

Assume the user has written the comment:

COMMENT THIS COMMENT MARKS THE HALF-WAY STAGE;

a 2/20

ae

In this case the Skip name COMMENT ~eppeaxe. within an argument
of the skip COMMENT However, it is cleariy undesirable that
ML/I should treat the second COMMENT as a nésted skip and try
to match it with a semicolon. To prevent this happening
COMMENT would be defined as a skip with the matched option
off. This is called a straight skip.

However, there are applications of skips where it is
desirable for nested skips to be recognised, and such ski':s have
the matched option on. They are called matcned skips. ti.samples

of applications of matched skips are “strings” in Algol, which
allow nested string quotes and “literal brackets", which are
described later. If ML/I encounters any skip name during the
scanning of a matched skip it matches the nested skip with its
delimiters before matching the containing skip with its delimiters.
The scanning process is described in more detail in Section 3.4.
In a nest of skips the vaiue is entirely controiled by the options
associated with the outermost skip.

2-7-2 Literal brackets

It is usual to have in eacr environment a skip definiticn
consisting of a name and a closing delimiter with the options
set in such a way that at every occurrence of the skip the argument
is copied and the delimiters deleted. Such skips are called literal
brackets. It will be assumed in the rest of this manual that the
name ‘<' with closing delimiter '>' have been defined as a pair
of literal brackets. If it was requirea to copy a piece of text

literally over to the value text, ignoring all macro calls and
inserts, then the text would be written:

< text >

The process of evaluation would consist simply of removing the
literal brackets. Literal brackets always have the matched option
on. The reason for this will become apparent in Section 4.2.

2.7.3 Example of a matched skip

The following example, which is rathex more complicated
than any situation likely to arise in practice, illustrates the
full implications of the rules for the matching of skips.

2/21 -

Example In the text:

< AAA <. BBB COMMENT < 3: cec > DDD >

the initial "<" is matched with the last "s". (The occurrence

of "<" after COMMENT is not recognised as a skip name since
COMMENT is a straight skip.) The value of this text is:

AAA < BBB COMMENT < ; CCC > DDD

This value is independent of how the cGelimiter and text options
for COMMENT are set.

2.8 Warning markers

Up to now, ML/I has been described as if every occurrence of
a macro name not within a skip is taken as a start of a macro call.
In fact this is only true if the environment is in free mode.

If he wishes, the user may place the environment in
warning mode by defining one or more warning markers. Any
atom or series of atoms may be defined as a warning marker.
In warning mode each macro call must commence with a warning |
marker. Optional spaces are allowed between the warning marker
and the macro name which follows it. Thus if CALL were a warning
marker, the ESUB macro would be called by writing:

CALL ESUB X NL

In warning mode each occurrence of a warning marker must be followed
by a macro name. Any macro name not preceded by 4 warning marker

is not recognised as such.

The essential difference between warning mode and free mode
is that in the first case all macro calls have to be specially
marked by preceding them with warning markers whereas in the second
case all macro names that are not to be taken as macro calls have
to be specially marked by enclosing them in skips.

Note that warning markers only apply to macro calls, and
must not be used to precede inserts or skips. These latter are
always recognised, irrespective of the mode of the scan.

2/22.

2.9 Summary of the environment

All the constituents of the environment have. now been defined.
To recap these are:

(a) Macro definitions.

(b) Insert definitions.

(c) Skip definitions.

(d) Warning marker definitions.

(e) Permanent variables.

(£) System variables.

(g}) Temporary variables.

(h) Arguments.

(i) Delimiters.

(j) Macro labels.

The term construction is used as a collective name for
skips, inserts and macro calls and the term name environment
is used as a collective name for constituents (a), (b), (c) and
(d) above since the names of these constituents are used to
recognise constructions in the scanned text.

2.10* Normal-scan macros and straight~scan macros

This Section explains the difference between normal-scan
Macros and straight~-scan macros. However, straight-scan macros
have only limited uses and the reader may choose to skip this
Section and assume that all macros are normal~scan.

The difference between the two types of macro arises in

the scanning of macro calls. In the case of a normal-scan macro
constructions nested within the cali are recognised, whereas in
the case of a straight-scan macro the effect is as if the name
environment were temporarily removed during the scanning of the w
call. As an example of the use of a straight~scan macro, consider
a language where comments are commenced with the word NOTE and
ended with a semicolon. Assume it is desired to use ML/I to
map this language into a language where comments are enclosed
between the atoms "[" and "]". It is not possible to achieve

2/23

this transformation by the use cf skips cince the options on skips

Go not permit the insertion of extra characters and normal-scan

macros are inadequate since it is not desired to recognise macro

names within comments. Hence NOTE would be defined as a straight-

scan macro. Its replacement text would be:

[SWAL. |

The xceplacement text of a straignt~scan macro is evaluated in

exactly the same way as that of a normal-scan macro.

The reader will no doubt have noticed that there is an

analogy between the two types of macro and the two types of

skip. In fact any straight skip can be represented as a straight~-

scan macro. However, straight skips are preferable, where possible,

since they are slightly easier to define and much faster in execution.

The analogy between normal-scan macros and matched skips is not
so close. Normal-scan macros permit any constructions to be nested

within calls of them whereas matched skips only allow further

skips to be nested within them.

The straight-scan option can only apply to user-defined
macros; it cannot apply to inserts or to operation macros (see.

Section 4.1).

2.11 Name environment used for examples

To avoid unnecessary repetition, a fixed name environment
will be assumed in all subsequent examples. This environment
consists of:

(a) The atom "3" with closing delimiter "." as an insert

definition.

(ob) The atoms "<" and ">" as literal brackets.

(c) COMMENT as a straight skip with closing delimiter

semicolon.

(d) The DO and MOVE FROM macros of Section 2.4.1.

(c) The ESUB macro of Section 2.4.

(£) No warning markers.

All the macros above are taken to be normal-scan.

3/1

Chapter 3 Text scanning and evaluation

3.1 Nesting and recursion

Constructions may be nested to any desired depth, and may
appear within replacement text. Furthermore, recursive macro calls
are allowed. In other words, any construction is allowed with
any Piece of replacement text or inserted text, and a macro
may be called while evaluating its own replacement text. However,
constructions must be properly nested. This means that each construc-
tion must lie entirely within a single piece of replacement text,
entirely within a single piece of inserted text or entirely within
the source text. Apart from this obvious restriction, ML/I contains
no restrictions on nesting and recursion.

As a result of nesting and recursion, the process of text
evaluation is in general a recursive one. At the beginning of
a process ML/I starts evaluating the source text. During this
evaluation it will in seneral encounter a macro call. This will
cause it to temporarily suspend the evaluation of the source text
and start evaluating the replacement text of the call. While
evaluating this replacement text, ML/I may encounter an insert,
and this will cause it to suspend the evaluation of the replacement
text and start evaluating some inserted text. Alternatively, ©
it may encounter a nested tacro call. Thus at any one time several
pieces of text may be in the process of evaluation.

This situation is liable to lead to ambiquities in terminology,
so it is necessary to clarify some of the terms that will be used.
The terms "the scanned text", "the current environment" and "the
Current voint of scan” will always refer to the text actually
being evaluated, not to any piece of text whose evaluation has
been temporarily suspended. ML/I is said to be evaluating inserted
text if the scanned text is inserted text, and a similar definition
applies to “evaluating replacement text". ML/I is said to he
evaluating the source text if it is not within the evaluation of
any Macre calis or inserts.

3.2 Call sy nane

Arguments and delimiters cre evaluated cach time they are
inserted, rather than when the call in which they occur is scanned.

i)

~~

NM

In other words they are “called hy name" rathex than "called by
value”. In most cases, cf course, this choice of approach makes
no difference to the final result, but it does have an effect if
the environment changes between the time an argument is scanned
and the time it is inserted.

3.3 Details of the scanning process

When text is evaluated it is scanned atom by atom until the
end is reached. All text, whether the source text, replacement
text or inserted text, is scanned and evaluated in the same way.
In general each atom of the scanned text is compared with all the
names in the environment to see if a match can be found. However,
aS was seen in the previous Chapter, some types of name are not
recognised under certain circumstances. The complete list of
such circumstances is as follows:

(a) No names are recognised within a straight skip or
straight-scan macro call.

(b) Apart from skip names, no names are recognised within
a matched skip.

(c) In warning mode macro names are not recognised except
after warning markers. Immediately after a warning marker
ho names except macro names and no secondary delimiters

are recognised (unless an error occurs, see Section
6.3.4).

When a construction name is found a search is made for its closing
delimite:. This process is described in the next Section.

Some names in the envircnment may consist of more than one
atom. In this case when an atom of the scanned text is found to
match the first atom of the name the scanning process looks ahead

to see if the remaining atoms of the name follow this atom.
(This look-ahead is abandoned if the end of the current text
is reached.) If a match is found scanning is resumed beyond
the last atom of the name. The user can specify for each pair
of atoms of a multi-atom name whether spaces between the atoms are to
ye ignored by the scan. Multi~atom secondary delimiters are
matched in exactly the same way as multi-atom names.

3/3

Apart from these casee of nlulti~stom delimiters the scan
always proceeds atom by atom. Hach atom not within a construction
is copied over to the value text. Atoms within skips may or may
not be copied according tc the option settings. Atoms within
macro calls or inserts are never copied over to the value text
since the very purpose of these constructions is to perform a
replacement.

3.4 . The method of searching for delimiters

When ML/I encounters a construction name, it searches for
each of the secondary delimiters until the closing delimiter is
found (except in the case where the construction name is its own
closing delimiter, when no searching is required). In general
an error message (see Section 6.3.5) is given if the end of the
current piece of text is reached before the closing delimiter has
been found. In this case the construction is said to be unmatched.
Exclusive delimiters, however, provide a slight exception to this
rule (see next Section). If, during the search for the delimiters
of a construction, a nested construction is encountered, then the
search for the delimiters of the outer construction is suspended
until the closing delimiter of the nested construction has been
found. Nested constructions can only arise within inserts, matched
skips and normal-scan macros. Since arguments are called by name
rather than by value, nested constructions are not evaluated when
scanned over during the search for delimiters of a containing
construction. Evaluation occurs only when the argument containing
the nested construction is inserted.

The process of searching for closing delimiters is illustrated
by the following rather pathological example (remember that the
name environment of Section 2.11 applies to this and all subsequent
examples).

DO 3 TIMES < REPEAT DO >

ESUB REPEAT

DO REPEAT TIMES

REPLAT

REPEAT

3/4

In this example the first DO is matched with the last REPEAT,
since the search for the REPEAT for this first DO is suspended
during the scanning of the nested constructions <, ESUB and DO.
Furthermore the occurrence of DO within the literal brackets is
not recognised as a macro name.

In general, a single closing delimiter cannot terminate two
separate constructions. Thus two successive REPEATs are needed
in the above example to close both the DO macros. However, exclusive
delimiters again provide an exception to the rule.

As a further example, if the user were foolish enough to write:

MOVE FROM TO TO PIG;

then the first TO would be taken as the delimiter of MOVE FROM.
What he should write to make the second TO the delimiter is:

MOVE FROM < TO > TO PIG;

However, there is nothing wrong with writing:

MOVE FROM PIG TO TO;

In practice, if delimiter names are chosen sensibly, problems
such as the above rarely arise.

3.5* Exclusive delimiters

(It is highly recommended that this Section be skipped on
a first s‘eading as it describes a rather complicated feature which

is only occasionally needed.)

In the normal way, after a construction has been scanned over
and replaced by its value, scanning is resumed with the atom following
the closing delimiter of the construction. Hence the closing
delimiter is taken as part of the construction. In a few cases,
however, it is more convenient to regard the closing delimiter
as external to the construction. Such a delimiter is called an
exclusive delimiter. Only macros and skips may have exclusive
delimiters and exclusive delimiters are always closing delimiters.
After a construction with an exclusive delimiter has been dealt

3/5

with, scanning is” resumed at the exclusive delimiter rather than
beyond it.

Exclusive delimiters are useful when it is desired to use
a single delimiter as a closing delimiter of several nested construc”
tions. For example an IF macro might have form:

IF condition THEN nested macro call NL

where the nested macro call is terminated, like IF, by the closing
newline. In this case, it would be necessary to define newline
as an exclusive delimiter of any macro that conlid be nested within
the IF macro. Then when the scan had used the newline to close
the nested macro call it would re-scan it and use it again to
close the IF macro.

Asdifficulty arises in the above example when, within the
replacement text of IF, the second argument is inserted. The
problem is that the nested macro call is unmatched within this
argument, since its closing delimiter, the newline, lies beyond
‘the end of the argument. ML/I resolves this problem by using
the following rule; if, when inserting the Nth argument of a
macro call, a construction is unmatched then the Nth delimiter
is examined and if this delimiter (or a series of atoms at the.
start of it) is an exclusive closing delimiter which closes the
apparently unmatched construction then this construction is considered
as matched and processing proceeds normally. If there is a nest
of unmatched constructions then this rule is successively applied
to all the constructions in turn. (In fact this rule is such
a natural one that the user might not realize that there is any
logical problem at all.)

Note that it is quite legal to insert an exclusive delimiter
in the replacement text of the macro call to which it belongs.
It is even legal to define a name delimiter as an exclusive delimiter
(though this is almost certain to lead to an endless loop). Further-
more it is quite legal to have both exclusive delimiters and ordinary
closing delimiters within the same delimiter structure.

If a skip ends with an exclusive delimiter this closing
delimiter is not taken as part of the skip and hence it is not
affected by the delimiter option associated with the skip.

3/6

Exclusive delimitexys are sometimec useful in simple
applications where no nesting is involved. For instance it is
often desirable for a skip to delete up to, but not including,
the next newline.

As a more complicated example, consider a language in which
macro calls were one to a line with the macro name coming first
In this case it might be convenient to give newline a double
use: firstly as an exclusive delimiter of the macro on the previous
line and secondly as a warning marker to precede the macro name
on the next line.

The way exclusive delimiters are defined is described at
the end of Section 5.1.3.

3.6* Dynamically generated constructions

The method of scanning, with the requirement that calls
be properly nested, means that all the delimiters of a construction
must be in the same piece of text. This rule, which is very
desirable since it leads to the early detection of genuine errors,
should be borne in mind by the user who wishes to generate
constructions dynamically, for example to combine at macro-time
separate pieces of text to build up a macro call. The rule
prohibits constructions like:

CHOOSENAME A TO B;

where CHOOSENAME is a macro with replacement text MOVE FROM, or
constructions like:

DO A Al. B REPEAT

where Al. has value TIMES. It is however, quite easy to achieve
the object of these examples, namely to generate a delimiter
dynamically, and the reader who is interested in doing this
should refer to the example in Section 7.4.3.

4/1

Chapter 4 Operation macros and their use in setting up the
environment

4.1 Operation macros

The macros considered so far have been concerned with making
replacements of pieces of text. In fact, strictly speaking, they
should have been called substitution macros. There is a second
type of macro called an operation macro. A call of an operation
macro causes a predefined system action to take place, for example
the setting up of a new construction. Operation macros are
an integral part of ML/I and are not, like substitution macros,
defined by the user. They are, however, part of the name environment
and are called in the same way as substitution macros. Examples
of operation macros are MCSET (which performs macro-time arithmetic),
MCDEF (which defines a macro), and MCGO (which is a macro-time
conditional GO TO statement). Examples of their calls are:

MCSET Pl =pP2+1
MCDEF LNG AS LENG
MCGO L6 IF SAl. = Acc

Chapter 5 contains complete descriptions of ail the operation
macros. The names of all operation macros begin with MC to
minimize confusion with substitution macros. (The user is not
forbidden to start his own macro names with MC, but it is probably
less confusing not to.)

The arguments of all operation macros are evaluated before
being processed. Thus if TEMPNO were a macro with replacement
text Pl, then the following would be equivalent to the previous
example of MCSET:

MCSET TEMPNO = P2 +1

In most cases a call of an operation macro does not cause
any value text to be generated. No value text would be generated,
for instance, in any of the examples above. However, there are
two operation macros, MCSUB and MCLENG, which do cause value
text to be generated. These two macros are called system functions.
MCSUB is used for generating substrings of longer pieces of
text and MCLENG is used to calculate the length of a piece of text.

4/2

There are no general restrictions on. the use of operation
macros. They may be called from within any type of text, even
from within arguments to other operation macros.

4.2 Use of literal brackets for surrounding operation macro
argumen ts

The fact that arguments of operation macros are evaluated
before being processed has several advantages but it also has
its dangers, and in many cases the user will wish to inhibit
this argument evaluation. Consider as an example the last
argument of xCDEF, which specifies the replacement text of the
macro being defined. A definition might be written:

MCDEF eee AS <..e8Al,. woe”

If the above literal brackets haa been omitted, ML/I would have
tried to insert the value of argument one at the time the macro
was defined (called definition time) rather than when it was called,
and an error would probaply result. Occasionally, however, a user
might want to do this, in particular when one macro is defined within
another and the arguments of the outer one figure in the definition.
Apart from cases like this it is a good plan to use literal brackets
whenever specifying the replacement text of a macro.

Another reason for tne usage of literal brackets arises when
the replacement text involves one or more newlines, &.g.

WMCDEF ... AS <LINE 1

LINE 2
>

In this case, since newline is also the closing delimiter of MCDEF,
the newlines within the replacement text need to be prevented from
closing the MCDEF. The literal brackets, being a construction
nested within the call of HCDEF, achieve this.

It is now possible to see why literal prackets must be
defined as matchea skips rather than straight skips. Consider
the following example, where a piece of replacement text itself
contains a call of MCDEF:

MCDEF MACL AS < ... |
mCDEF MAC2 AS < eee >

eee COMMENT > 3 ,
>

It is vital that the first "<" be matched with the last ">"

4/3

and not with.the.occurrence of this symbol in a comment nor with

the occurrence in the nested MCDEF. The definition of literal
brackets as a matched skip accomplishes this.

4.3 NEC macros

Many of the operation macros have the effect of adding
to or deleting from the name environment. These macros are

called NEC (name environment changing) macros. The name environment

is set up up dynamically by calls of WEC macros during text evaluation.
The initial state of the name environment is implementation-
defined (see Section 2 of relevant Appendix) but it will usually
contain just the operation macros. Changes in the environment
affect subsequent text evaluation but have no effect on value
text already generated. Constructions may be defined as eicher
local or global. Global constructions apply to all subsequent
text evaluation, whereas local constructions apply only to the
text in which they are defined, together with any macros called
from within this text (for exact details see next Section). A
local definition occurring in the source text has the same effect
as a global definition.

To start with, most users will probably not be very interested
in defining new macros in the middle of text evaluation. In this
case the entire name environment can be set up by a series of
NEC macro calls at the start of the source text, and all the rest
of the text can be evaluated using this name environment. Local
definitions should be used in preference to global ones where
possible since the setting up of global definitions involves more
work for ML/I. (Wormally global definitions are only necessary
when it is desired to use one macro to set up the definition of
another. A reader who is not interested in changing the name
environment dynamically can skip the next two Sections. He can,
in fact, totally ignore global definitions and he need not worry
about the difference between protected and unprotected inserts.

4.4* Dynamic aspects of the environment

The value of a piece of text depends upon the state of the
environment when its evaluation is started. The purpose of this
Section is to define the initial state of the environment when
replacement text or inserted text is evaluated, and to explain
the effect of dynamic changes in the name environment.

4/4

It is convenient to divide the name environment into two
parts:

(a) The global name environment, which contains the names
of global constructions, Operation macro names are
treated as global.

(ob) The local name environment, which contains the names of
local const¥Yructions.

If a substitution macro is called or if an argument or delimiter
is inserted, this cannot change the local name environment of
the containing text. However, any change in the global name
environment applies to the subsequent evaluation of the containing
text. In other words there is a single global name environment
but each piece of text in the process of evaluation has its own
particular local name environment,

When a substitution macro is called, the replacement text
is evaluated under the following initial environment:

{a) the global name environment in effect when the cal
is made.

(>) the local name environment in effect when the call
is made.

(c) the permanent and system variables.

(a) the arguments and delimiters of the call.

(e) a set of temporary variables. These are allocated
when the call is made. The number allocated is given
by the capacity of the macro called.

(Ff) no macro labels.

When an operation macro is called, no special environment

is set up and no temporary variakbies are allocated. The arguments

of the operation macro are evaluated under the environment in

force when the call was scanned. The same applies to the argument
of an insert.

4/5

Pad

Before considering the initial environment for the evaluation
of inserted text, it is instructive to consider an example that
will illustrate the reasons behind the rules. This example
involves passing arguments down from one macro to another.
Assume that witnin the replacement text of a macro XYZ it is
desired to call the MOVE FROM macro to move the second argument
of XYZ into a place called TEMP. This call of MOVE FROM woulda
be written:

MOVE FROM %A2. TO TEMP;

This call would cause the replacement text of the MOVE FROM macro
to be evaluated and during this evaluation it would be necessary
to insert the first argument of MOVE FROM. The insertion of this
argument involves the performing of the insert "%$A2.". Now in
this case ML/I takes A2 to mean the second argument of XYZ, not
the second argument of MOVE FROM. The initial state cf the
environment for the evaluation of inserted text is set to make
this sc. This initial environment consists of:

(a) the current global name environment.

(bo) a local name environment. This depends on whether
the insert is protected or unprotected. See next
Section.

({c) the permanent and system variables.

(d), (e) the arguments, delimiters and temporary variables
that were in the environment when the call containing
the text to be inserted was encountered.

(f£) no macro labels.

The reader may have noticed that no initial environment
contains any macro labels. This is because it is not possibile
to use the MCGO macro to jump from one piece of text to another.
Thus each piece of text has its own macro labels, and macro labels
are not carried down from one piece of text to another.

4.5* Protected and unprotected inserts

The difference between protected and unprotected inserts
is best illustrated by an example. Consider a macro ABC whose

4/6

replacement text starts as follows: -

MCDEF TEMP AS = LEN

$AlL J

Assume ABC is called with TEMP as its first argument. Then

if "$" has been defined as a protected insert the value of
Al. is TEMP. If it has been defined as an unprotected insert

the value is LMN. (CDEF defines a local macro. if MCDEFG,

which defines a global macro, had been used in place of NCDEF

then the valve of %Al. would always be LMN.) Hence the purpose

of a protected insert is to protect the insertion of a macro's

arguments or delimiters from any changes in the local environment

of the macro's repiacement text. It is often useful, for

instance, to switch into warning mode when entering the repiacement

text of a macro but still to evaluate its arguments in free

mode. In some applications the user may wish to define two

insert names, one protected and the other unprotected. In most

applications, however, it will be entirely immaterial which sort

of insert is defined.

To complete the definition of the previous Section, the

initial local name environment when inserted text is evaluated

is as follows:

(a) If the insert is a protected insert then it is the

local name environment that was in force when the

call containing the inserted text was encountered.

(bo) If the insert is an unprotected insert then it is the

local name environment that was in force when the

insert was encountered.

4.6* Ambiguous use cf names

When defining new constructions the user should be careful

to avoid certain clashes of name. It would obviously be foolish,

for instance, to choose the name MCDEF for a new construction.

ML/I has a fixed set of priority rules for dealing with muitiply-

defined names, and these are listed below. However, for the reader

who is not interested in these complications the following simple

rule for defining new constructions is sufficient to avoid difficult

choose the delimiters to be different from all other environmental

4/7

names (i.e. the names of macros, inserts, skips and warning markers
in the current environment). It is quite acceptable, of course,
to choose the same representation for the secondary delimiters
of different constructions. For example, all macres could have
a newline as their closing delimiter. Furthermore it is perfectly
in order to have several different names all beginning with the
same atom(s); for example three separate macros could have names
RETURN, RETURN TO and RETURN IF. ML/I always tries to find the
longest name it can, so in this example it would only call the
RETURN macro if RETRUN was not followed by TO or IF. The reader
who is prepared to adopt the simple rule above can skip the rest
of this Section.

A name clash is considered to occur if an atom or series
of atoms of the scanned text can be interpreted in more thau one
way. Note that some environmental names are ignored within certain .
ontexts (see Section 3.4 for a complete list) and thus a name

can sometimes be multiply~defined without a clash occurring.
For example, in warning mode it is unambiguous to have a macro
name the same as an insert name since each is recognised ina
different context.

When a name clash does occur, the following rules are applied
in order until all ambicuity is removed:

(a) Exclusive delimiters take precedence over everything
else.

(pb) A longer delimiter takes precedence over a shorter one
{as illustrated by the above RETURN example).

(c) Secondary delimiters take precedence over environmental
names.

-(a) Local environmental names takes precedence over global
ones.

{a) fhe most recently defined environmental name takes
precedence,

4.7* Implications of rvles for name clashes

Some implications of the rules in the previous Section are:

(a)

(c)

(a)

(e)

4/8

A construction may be overridden by redefining it.
It is even possibile to redefine a macro within its
own replacement text. If it is desired to achieve
the effect of deleting a macro name PQR from the
environment this can be achieved by defining PQR
as a skip using the MCSKIP macro of Section 5.2.3
as follows:

MCSKIP D, <PQR>

(PQR is enclosed in literal brackets to prevent it
being called.) This technique can be used for all
construction names. Wote that when a construction
is redefined its old use is not completely deleted
(no storage is released) and it is possible under
some circumstances to re~incarnate the old usage.
For example the overriding use may have restricted
scope or it may be deleted py one of the macros of
Section 5.2.5, such as MCNOSKIP.

It is usually acceptable to chcose a construction
name to be the same as the secondary delimiter of
another construction. For instance there is no narm
in choosing IF as a macro name even though it is
a delimiter of MCGO. The only restriction on the
use of IF would be that it could not be called within
the first argument of MCGO. (This restriction only
applies in free mode. In warning mode there would
be no restriction.)

A technique (described in Section 7.4.8) can be
designed to give constructions different meanings
in different scopes.

ff it is desired to design a language where each
macro call occupies one line, it is practicable to
define newline as an exclusive delimiter of each
macro and also as a warning marker or as a part of
a composite macro name (for instance NL GO TO could
be a macro name).

If each of GO, GO TO, and TO THE END are macro names

4/9

then

GO TO THE END

is interpreted as a cali of GO TO, not as a call

of GO and a call of TO THE END. This is because
the rules of the previous Section are applied at
each step in the scan. There is no mechanism for
looking ahead and thus deciding, for instance, to
take a shorter delimiter at one step in order to
get a longer one later.

5/1

Chapter 5 Specification of individual operation macros

This Chapter contains descriptions of the operation macros
which should be present in every implementation. In addition,
each implementation may have its own particular operation macros
(see Section 1 of relevant Appendix).

Arguments of cperation macros are evaluated before being
processed in the same way as arguments of substitution macros.
Leading and trailing spaces are deleted before evaluation in
all cases.

Descriptions of the operation macros have been arranged
in a standard format which consists of a number of subsections.
These subsections in order of occurrence are described below.

(1) Purpose.

(2) General form.

(3) Examples. Examples may not be comprehensible until
further subsections have been read. Each example
is independent of all the others.

(4) Restrictions. This subsection describes any restrictions
on the form that the values of the arguments of the
macro can take. If this subsection is omitted there
are no restrictions. The notation "ARG X" is used
to represent the value of the argument corresponding
to arg X in the General Form.

(5)* Order of evaluation. This subsection describes
the order in which arguments are evaluated. It
is omitted if the order is sequential. The order
of evaluation is, of course, immaterial in all but
the most pathological cases. Note that any change
in the name environment caused by the call of a
NEC macro does not come into effect until after all
its arguments have been evaluated. It is possible
for an operation macro to be aborted due to an error
before all its arguments have been evaluated.

5/2

”

(6) System action. This subsection describes the action
performed by ML/I at a call of the macro. A reference
to "the current environment" means the environment
in force when the macro was called. Apart from the
system functions, all operation macros have a null
value.

(7) Notes. This subsection contains nothing new, but
attempts to bring out more clearly points implied
by the preceding material.

Before describing the individual operation macros it is
necessary to describe how to define delimiter structures, since
all the operation macros which define new constructions have an
argument which specifies the delimiter structure of the construction.

5.1 Specification of delimiter structures

bpelimiter structures are defined by writing a structure
representation, which defines all the delimiters in the structure
and the successor(s) of each. The atoms that make up a delimiter
are specified by a delimiter name, which is written in the
following way:

(WITH) 27 * atom [¢ withs) atom * ? |

The difference between WITH and WITHS is as follows. If two
atoms are linked by WITHS, this means that any number of spaces
(including none) may occur between the atoms when the delimiter
is used. WITH, on the other hand, means that no intervening
spaces are allowed.

As an example, the delimiter names of a macro of form:

COMPARE CHARACTERS argument 1 /// argument 2 ;

would be: ; .

(1) COMPARE WITHS CHARACTERS

(2) / WITH / WITH /

(3) 3;

5/3

If,for some reason, it was deSired to restrict the number of
permissible spaces between COMPARE and CHARACTERS to one, then
this would be specified by:

(la) COMPARE WITH SPACE WITH CHARACTERS

Note that at least one space must be allowed between COMPARE
and CHARACTERS because otherwise they would not be recognised
as separate atoms. Thus, in the general case, a delimiter name
is in error if two atoms are connected by WITH and neither

atom is a punctuation character.

It is now necessary to consider how delimiter names are
combined to form a structure representation. In the simplest
case, the case of a construction with fixed delimiters, this

is done simply by concatenating the delimiter names in the order

in which they are to occur. Thus the complete structure
representations of some of the constructions used as examples
in this manual (see Section 2.11) are:

(a) &%.

(pb) < >
(c) COMMENT;

(d) DO TIMES REPEAT

(e). MOVE WITHS FROM TO;

5.1.1 Keywords

Within a structure representation the. atoms are separated
out by Layout characters, i.e. spaces, newlines, tabs, etc.
(In the above examples spaces have been used.) Apart from acting
as separators, layout characters are totally ignored within
structure representations. Thus a problem arises when it is

desired to specify a layout character as a delimiter, or as

a constituent atom of a multi-atom delimiter. This problem
is overcome by using layout keywords to stand for layout characters.

In particular:

SPACE means a space.

5/4

TAB means a tap.

NL means a newline.

SPACES means a sequence of one ar more.spaces.

In |addition each implementation may havs ite ewn extra layout
keywords. ‘See Section 6 of the xelevant Appendix for details.
The characters represented by these keywords are treated as
layout characters and hence, within structure representations,
are exactly equivalent to newlines or spaces. Note that layout
keywords only apply within structure representations.

The following are examples of delimiter structures using
layout keywords

(a) ESUB NL

(b) SPACE

(c) SPACE WITH SPACES (means two or more spaces)

(d) LD WITH SPACES SPACES WL

A construction defined using (d) above, would be analysed thus:

LD Xx ¥Y NU
| J | |

rr \7

delimiter 0 Gelimiter 1 delimiter 2

Note how all the spaces following LD are absorbed into the name;
if they had not been defined to be part of the name they would
have been taken as the first delimiter.

It is permissible to use SPACES before or after WITHS;
in these cases it is exactly equivalent to SPACE.

In addition to these layout keywords, there are other
keywords that apply within structure representations. These
are: WITH, WITHS, OPT, OR, ALL and any atom commencing with
the letter ‘w' followed by a digit. Keywords are reserved
words and can not be used as the atoms of delimiters. However,
if it is necessary to define, say, WITH as a delimiter name,
then the keyword WITH could be changed to something else (e.g.
'+') by using the MCALTER macro described in Section 5.2.7.

5/5

5.1.2 The consequences of evaluation

Since structure representations occur as.arguments to

operation macros they are evaluated before being processed,
Two consequences of this, one beneficial to the user and the
other a nuisance, are as follows.

The beneficial consequence is that much-used alternatives
can be artificially generated. Assume, for example, that a
large number of macros have the form:

NAME (argument) NL

where NAME varies from macro to macro. In this case it would
be useful to define a macro PARENS with replacement text:

WITH § () WITH NL

Then a macro DOG of the above form could be defined by writing:

DOG PARENS

The mischievous consequence arises if an attempt is made
to redefine a macro. Assume that a macro EMPLOYEE is defined
thus:

MCDEF EMPLOYEE AS < J. SHITH >

and then subsequently an attempt is nade to redefine it by
writing:

MCDEF EMPLOYER AS < 3. BLOGGS >

In this second definition the structure representation is J. SMITH

since EMPLOYEE is replaced by its value. Hence a macro J would
be defined with secondary delimiters "," and SMITH. The end
result would probably be a puzzling error message, perhaps
that a delimiter of the macro J was missing.

To avoid problems such as this it is imperative to enclose
‘a name in literal brackets if it is being redefined. The same
applies if the name of one macro occurs as a delimiter of another.
In fact it is not a bad rule to enclose all structure representations

5/6

in literal brackets except where constructions snch.as PARENS
are being used. The correct way to redefine EMPLOYEE would
be:

KICDEF < EMPLOYEE > AS < J. BLOGGS >

5.1.3 * Introduction to more complicated cases

The Sections which follow describe facilities for setting
up more and more elaborate delimiter structures. The reader is
recommended to read on until he knows enough for his own applications
and then to skip the rest. Readers who are only interested
in fixed delimiters may give up now.

In order to specify the delimiter structure of a construction
it is necessary to specify the name(s) of the construction and
the successor(s) of each delimiter that is not a closing delimiter.
In the simple cases described above the structure representation

consisted of the name of the construction and then each succeeding
delimiter followed by its successor until the closing delimiter.
In more complicated cases it is necessary to have two other
mechanisms for specifying successors, namely option lists and
nodes. Furtnermore it is convenient to imagine that a special
symbol a occurs at the start of each structure representation
and another symbol w at the end. With this convention any
successor of o is a name of the construction and any delimiter
with w as successor is a closing delimiter, The paragraphs
which follow contain informal introductions to the concepts of
option lists and nodes. More exact details are given in the
next Section.

Option lists are used to specify that a delimiter has
several optional alternatives as successor. The essential

form of an option list is:

OPT branch 1 OR branch 2 OR... OR branch N ALL

The ordering of the branches is immaterial. An. example
of the use of an option list is in the following structure
representation for the ESUB macro:

ESUB OPT TAB OR WL AGL

If, in addition, it was decided to allow SUBTRACT as an alternative

5/7

name to ESUB, then its-structure representation would bes

OPT uUSUB OR SUBTRACT ALL OPT TAB OR NL ALL

In the ordinary way the successor of the delimiter at the
end of a branch is taken as the delimiter fcllowing the
ALL concluding the option list. In other words the branches
may be thought of as coalescing at the delimiter following
ALL. (Thus in the example above both ESUB and SUBTRACT
have either tab or newline as alternative successors and both
tab and newline have the imaginary symool w as successor
‘and are therefore closing delimiters.) However, as will be
seen, it is possible to override this coalescing effect by the
use of nodes.

Wodes are used for defining the successor of a delimiter
to be a delimiter or option list elsewhere in the structure
representation. The use of nodes in structure representations
is analogous to the use of labels in programming languages.
As the reader: will know, the statements in a programming language
are written in sequence and tne "successor" Of each statement
is normally taken as the statement which fallows. However, |
the user can specify a different successor sy the use of labels.
A label is "placed" on one program statement and is then “gone
to" after any program.statement which requires the laselled
statement as successor. In exactly the same way, nodes are
used to specify the successors of delimiters.

A node is represented by a node flag followed by a positive
-integer. The normal node flag is the levter 'N' but this
can be changed if desired using the siCALTER macro of Section
5.2.7. It will be assumed in this manual that the node flag
is 'N'. A node is placed by writing its name before any delimiter
name or option list. A node can be "gone to” only from the end
of a branch of an option list or at the end of a structure
representation. A "go to" is indicated simply by placing the
name of the appropriate node at the desired point. (Although
the name of a node is used both to place it and to go to it,
there is no ambiguity, owing to the different context in which
each occurs.) .As a simple example of the use of nodes, consider.
the structure representation of a SUM macro which allows any
number of arguments separated by plus or minus signs and terminated

5/8

by a semicclon. A typical call of SUM would be:

SU4 A+ B-~ C+D;

The structure representation of SUM is:

SUM W1 OPT + Nl OR - NL-OR ; ALL

Toais is interpreted thus. SUM is followed by either a plus
sign, a minus sign or a semicolon. Wode Nl is placed before the
option list. ‘The successor of both plus and minus is defined
by going to Wl, and Nl is associated with the alternatives plus,
minus and semicolon. The successor of semicolon, on the other
hand, is taken as the delimiter which follows ALL, which is wo.
Hence the semicolon is a closing delimiter.

There are no particular restrictions on the use of nodes.
Any number of nodes may be placed within a structure representation
provided, of course, that they have different numbers. Any positive
integers may be chosen to designate nodes; no particular sequence
is required. Node numbers are local co the structure representation
in which they occur and nence there is no relation between the
nodes of one structure representation and those of another.
Thus the same node numbers may be used in each case. ‘there are
no restrictions on-“the scope of a "go to"; thus it may dive
into an option list or alternatively come out of one.

The node WY (N zero) has a special usage, namely to denote
an exclusive delimiter. Node W@ may be gone to but it may not
be placed. If the successor of a delimiter is specified by
WY then this delimiter is taken as an exclusive delimiter.
Apart from NY, it is illegal to go to a node without placing
it.

5.1.4 * Full syntax of structure representations

Before describing the general form of a structure representatic

it is necessary to describe a number of syntactic sub-components.
These are:

(a) A nodeplace represents tne placing of a node and is
specified by the node flag followed by an unsigned

5/9

positive integer.

(0) A nocdego represeits tne action of going to a node
and is also specifiec ny the node flag followed
by an unsigned integer. (In this case and case

(a) above any reduidant leading zeros are ignored.)

(c) A delspec represents the specification of a delimiter
er an option list and is of forms

_— (delimiter name)
a ? ; . ane . . [nodepiace ? | (OPT branch | OR [nodeplace ?] »rancn *?] ALL)

wnere a brancn is of form:

delimiter name [delspec * ?] [nodego ? J

(The reader may like to look ahead to the examples in-
the next Section at this point.) Wote that eacn braicn
must begin with a delimiter name, called the branch name.
The branch names are the possible alternative successors of
the delimiter preceding the option list, and must all ve
different. nus mo sequence of atous wust match more tnan one
branch name, and the following option list is therefore
incorrect:

OPT X WIth SPACe WITH Y wee OR X WITHS ¥ ... ALL

since "X Y¥" could owe tne name of either branch.

As was seen from the preceding example of the SUM macro,
nodeplaces immediately preceding an option list associate
the node with all the options of the list. ‘The syntax forbids
a nodeplace imnediateiy after OPT and a nodeplace immediately
following OR has a special meaning in that it associates tne
node not only witn the delimiter name that follows it but
also with the names of ail sussequent brancnes of tiie option
list. As an example, assume that the SUM macro was extended
to allow the user tue option of assigning tue answer by
writing, for example:

SULT.X = Y + 2; to calculate Y + % and assign the answer X,

or SUM Y + Z; to calculate Y¥Y + & and leave the answer in
an accumulator.

Here SUM has an optional first argument Gelimited by an
equals sign. Its structure representation could be written:

5/10

SUM OPT = Nl OR Wi + Nl OR = N1 OR 3 ALL

In this case Nl, whicn is placed after tne first OR, is
associated with the alternatives plus,ninus. and semicolon.

Now that the sub-components have been described it
is possible to give the general form of a structure representation,
This iss

[delspec * |} [nodeqo ? |

One iast point should be made about the writing of
structure representations. This concerns minimizing the amount
ef storage that is needed to store a delimiter structure.

The storage used is a function of the number of delimiter
names in the structure. Thus it is advisable to try to link
a structure together in such a way that it contains the minimum
number of delimiters. As an example of redundancy, consider
the followine structure representation:

BUMP OPT TIMES 3; OR ; ALL

This represents a construction of form:

BUMP [argument TIMES ?] argument ;

Note that the semicolon is repeated within the structure
representation of BUMP. However, this repetition can be
avoided by writing the structure representation in the following
improved way:

EUMP OPT TIMES Nl OR Wl 3 ALL

5.1.5 * @xamples of complex structure representations

This section contains the general forms of some possible
constructions together with the structure representation of
each. ,

Example 1

General form Either BUY arg A $ arg B . arg C;

or BUY arg A POUNDS arg B S&S arg C D arg D;

S/1LL

Structure representation BUY OPT # . OR POUNDS S D ALL;:

In the second form, if it is desired to allow the s and D
fields optionally to be omitted, tnen the structure representation
could be written:

EUY OPT ¥ - } OR POUNDS OPT S Wl OR W1 D : OR ; ALL ALL

Here Nl is associated with the possibilities D and semicolon.
In this form tiie semicoion is mentioned three tines. fie
structure representation is therefore improved oy writing
it in the following form, where semicolon oaly occurs onces

BUY OPT i - N2 OR POUNDS OPT S Nl OR Nl D N2 OR W2 7; ALL ALL

(The diagram in the next Section may be an aid to understending
this.)

Bxample 2

General form [/ argument * ? |] END

Structure representation Wl OPT / Nl OR EWD ALL

This macro has two possible names: "/" and "END".

isxample 3

(LOAD) General form (LOAD 9) arg A, arg B NL
(STORE)

where the newline is an exclusive delimiter.

Structure representation OP? LOAD OR LOAD WITHS WY OR STOR@ ALL, WL NG

5.1.6 Possible errors in structure representations

Great care must be taken in writing structure representations
as errors can have very unfortunate results. In complex cases
it may be useful to use a diagram. For example the following

5/12

represents the BUY macro of the s¥Yewious Section_in -its final
imoroved form. ote

, aye

g
H

¥
 @)

AO WIN DSS s
> > = >)

~. . D
(uy Ge SoD

“a , 3
Nj 7 > 7 (cs ay A we aie ,

Special points to be watcned in writing structure
representations are the use of keywords and the possible
differences between the structure representation as written
and its evaluated form. Rememver that keywords cannot be
used as delimiter names.

If wWL/I cGoes reject a structure representation as illegal
(giving the message of Section 6.3.6), then the following
are some of the possible causes:

(a) Illecal syntax, for example ;: unmatched OPT, node
after OPT, two nodes in succession, branch without
a name, placing of node zero, names Such as NIA.

(6) Keyword used as delimiter.

(c) Undefined ox multiply-defined node.

(d) Two branches with the same name.

(e) Misuse of WITH or WITHS e.g. GO WITH TO, X WITHS Nil.

{f) Structure witn no closing delimiter.

(g) Unconnected structure. For example the delimiter D
is not connected to the main structure in tne following
Cases

WOGOOD Nl OPT A N1 OR BNI AbL D

5.2 tne WEC

5/13

macros

The operation macros which change tha. name environment are

listed in this Section,

5.2.1 MCWARN

Purpose

General forn

Examples

Restrictions

System action

Definition of a lecal warning marker.

MCWARN arg A WL

(a) MCWARN §

(ob) MCWARN CALL WITHS THIS WITHS MACRO

ARG A must be a structure representation

consisting simply of a single delimiter name.

ARG A is added to the current environment
as a local warning marker and the current environ-
ment is placed in warning mode,

5.2.2 MCINS

Purpose

General form

Examples

Restrictions

System action

Notes

5/14

pefinition of a local insert.

mMcINS [arg A, ?] arg B WL

(a) MCIWS * .

(>) MCINS U, INSERT HERE

ARG A, if it exists, must consist of the
letter 'P' or the letter 'U'. Redundant
spaces are allowed. ARG B must be a structure
representation of form:

delimiter name delimiter name

A new local insert definition is added to the

current environment. The delimiter structure

of the new insert is represented by ARG B and
the option is defined as “protected” unless
ARG A exists and consists of the letter 'U'.

In this latter case it is defined as "unprotected".

(a) Unprotected inserts are only needed for
sophisticated applications of ML/I and users
with simple applications can safely omit

arg A.

Purpose Definition of a local skip.

General form cskip [arg A, ? |] arg BNL

Examples {a) MCSKIP WT, ()
defines "(" and ")" as Literal brackets.

(>) MCSHRIP a WITH. WITH B WITH. ;

deletes comments that commence witno WN.B.

and end with a semicolon.

(c) MCSKIP br, ' !

(a) NCSKIP WNONL WL

(c) HICSKIP T, NOPUNCT Wi OPT, Nl OR. Nl OR END ALL
causes all commas and periods between NOPUNCT and
END to be deleted.

(£) MCSKIP STATIC

deletes all occurrences of STATIC. Note that
the delimiter structure of a skip can specify
any numoer of delimiters, althougn usually
there will be one, as in this example, or two.

Restrictions ARG A, if it exists, must nave form:

Cee
(Tf)

Redundant spaces are allowed. ARG B must be

a structure representation.

System action A new local skip definition is added to the
current enviroament. The delimiter structure
of the new skip is represented oy ARG B, and
the matched option, the text option and the
delimiter option are set if ARG A contains
the letter M, T. or D, respectively. If
arg A is omitted none of the options is set.

5/16

Notes (a) The letters in ARG A may be in any order.

(bo) Li arc A is omitted and arg B contains
a conma, tnen this comma should be enclosed
in literal brackets to prevent it being
taken as a delimiter of WCSKIP.

5/17

5.2.4 MCDEF

.Purpose Definition of a local macro.

General form HCDEF [arg A vaRS ? | arg B (reas. arg C NL

Examples (a) MCDEF ARRSTZ& AS 6

(b) MCDEF ESUB NL

AS < CMA

ADD 3Al.
CiwA

>

is a definition of the ESUB macro used in
examples.

(c) MCDEF 6 VARS CALCULATE AS ...

(ad) MCDEF (OPT + OR - OR * ALL) AS <&SD1. BAl. BA?.>
This macro converts fully parenthesized
algebraic notation to Polish Prefix notation.
Thus, for example, it would convert
((PI*26)-LuNGTH) to -* PI 26 LENGTH.

(e) MCDEF PARENS AS WITH () WITH NL

defines the PARENS macro used in Section 5.1.2.

(£) MCDEF NOTE ; SSAS < [SWAL1.] >
is tne definition of the straight-scan
macro NOTE used as an example in Section 2.10.
"SSAS" stands for "straignt-scan AS".

(g) MCCDEF CALL NL NY AS ...
defines a CALL macro with newline as

an exclusive delimiter.

Restrictions ARG A, if it exists, tmust oe a macro expression
and ARG B must be a structure representation,

Order of evaluation arg A, arg C, arg B.

System action A new local macro definition is added to the
current environment. The delimiter structure.
of this new macro is represented by ARG B, the
replacement text is specified by ARG C and the

Notes

5/18

capacity (i.e. the number of temporary variables)
is the greater of the result of ARG A and
three. ‘The capacity is three if ARG A is
omitted. The new macro is set up as a normal-
scan macro if HCDEF is called with deliziter AS
and as a straight-scan macro if the delimiter
SS48 is used.

(a) The replacement text is normally enclosed

(b)

in literal brackets to delay evaluation
until macro call time aud to ensure that
any newlines within the replacement text
are not taken as the closing delimiter of
MCDEF,

If it is desired that the replacement text
be treated as a literal when the macio is
called as well as when it is defined, then
it is necessary to enclose the replacement
text in double literal brackets (see
example in Section 7.3.1).

5/19

5.2.5 NCNOWAPIT, MCNOINS, LiCNOSKIP aad MCNODEF

Purpose

General form

System actions

Notes.

Deletion of local constituents of the current

environment.

(a)

(b)

(c)

(a)

MCNOWARN

WCNOINS

MCWOSKIP

MCNODES

These macros respectively delete all local
warning markers, all local insert definitions,
all local skip definitions and all local macro
definitions from the current environment.
In addition, MCNOWARN causes the current)
environment to be placed in free mode unless
there are any global warning markers.

(a)

(ib)

(c)

(d)

(c)

‘Note that these macros do not have newline

as a closing delimiter.

In current implementations no storage is
released if a constituent of the environment
is deleted by one of these macros.

See the example in Section 7.3.4 for a method
of deleting individual constructions from

the environment.

If MCNOWARN is to be meaningful it must

be preceded by a warning marker.

MCNODEF does not cause the operation
Macros to be deleted from the environment
since these latter are global.

5.2.6 MCWARNG,

5/20

MCINSG, MCSKIPG and MCDEZS

Purpose

General form

Examples

Restrictions

System actions

Notes

Global equivalents of MCWARN, MCINS, MCSKIP and
WMCDEF.

Similar to those of tne corresponding local

macros.

(a) MCWARWG MACRO

(b) MCINSG /.

(c) MCSKIPG D?, TEXT::

(ad) MCDEFG Al. WITH(,)AS<...>

The restrictions on the forms of arguments
are the same as for the corresponding local

macros.

Is for the corresponding local macros except
that the newly-defined constituents are global
rather than local.

(a) If a global NEC macro is calied in the source
text, the effect is the same as if the
corresponding local macro had been called
(except for certain differences if the name
is multiply-defined). Glcbal constructions
are not, however, deleted by the macros
MCNOWARI etc. described in Section 5.2.5.
For reasons of efficiency the user is
recommended to use local macros where possible.

(b) If a call of MCWARNG occurs, all subsequent
text processing will be in warning mode,
since it is impossible to delete a global
warning marker.

5/21

5.2.7 MCALTER

Purpose Alteration of the secondary delimiters of
‘Operation macres or of the keywords used in
structure representations.

General form HCALT#@R arg A TO arg B NL

Examples (a) MCALTER

TO ;

MCALTER AS TO 3 ;

After these two calls of iiCALTER, Example
(a) of Section 5.2.4 would be written 3;

MCDEP ARRSIZE : 6;

(b) MCALTER WITH TO +
MCDEF JOIN + (WITH) AS ...

MCALYER + TO WITH

Here WITH is changed to + and then back
to WITH again in order to define a macro
"JOIN (" with delimiter WITH.

(c) MCALTER W TO 9

(dq) MCALTER SPACE TO BLANK

Restrictions $$ ARG A and ARG B must be single atoms. ARGA
must be either a secondary delimiter of one or
more operation macros or one of the keywords
used in structure representations. ARG B
must not be longer than the system name of any
delimiter or keyword matched by ARG A. If
ARG A is the node flag (i.e. the letter 'N'
or whatever has replaced it) then ARG B must
be a letter or a digit.

Order of evaluation arg B, arg A.

System action ARG B is substituted in place of ARG A wherever
ARG A Occurs as a secondary delimiter of an
operation macro or as a keyword.

5/22

Notes (a) MCALTER cannot be used to change the names of
operation macros.

(b) It is very dangerous to change a keyword or
delimiter to become the same as anotner
keyword, for instance:

MCALTER UNLESS YO IF

The effect of an alteration such as the
above on subsequent processing is undefined,
since it depends upon the order in which
delimiters are scanned.

(c) In the unlikely event of a call of MCALTER
specifying several replacements some of
which are valid, and some of which are
invalid because of the length of ARG B, then
the number of valid replacements that are
performed before the call is aborted is
undefined.

(d) In the MCGO macro (and in any other macro
where the action taken depends upon the form
of the delimiters), the delimiters are
examined immediately the macro is called
and no call of MCALTER within an argument
can affect the action of the containing macro.

(e) Since the operation macros are global, the
effect of MCALTER is also global.

(£) It has been assumed in examples throughout
this manual (apart from this Section) that
no calls of MCALTER have occurred.

(g) Since MCALTER has a global effect, it is
not recommended to use it locally to a
piece of replacement text. If it is used
locally, MCALTER must be called again
before leaving the replacement text in
order to cancel the changes that have been
rade,

(h)

5/23

-R lavouwk ‘evrerd can be MCALTERED to
Se the saro as the character it revresents,
vy
Soe

MCALTER NL TO <
>

This will effectively celate the lavout
kavword, 2.0. after the above MCALT™R,
nevline would stane for itsel*® within
structure ronorasentations ~- ib wouls
not act as a soenarator.

5/24

5.3 System functions

The operation macros which return values are listed in

this Section. Wote that these macros do not have a newline

as the closing delimiter.

59.3.1 MCLENG

Purpose

General form

Examples

System action

Function to find the length of a character
string.

MCLENG (arg A)

The left parenthesis is part of the macro name.
It may optionally be preceded by spaces.

(a) MCLENG (%Al.)

(b) HMCLEWG ($A1.$D3.PIG)

The value of this function is the number of
characters in ARG A. This number is represented
as a character string in the way described
in Section 2.6.7 (e).

5.3.2 MCSUB

Purpose

General form

3 xamples

5/25

Function to access a substring.

MCSUB (arg A, arg i, arg C)
The left parenthesis is part of the macro name,
It may optionaily be preceded by spaces.

(a) MCSUB (ABC/XKYZ, 3, 6)

This function has value C/XY.

(b) HCSUB (ARGUMENT, -2, QO)

This function nas value ENT, since
non-positive results of ARG B and ARGC
specify Offsets from the ena of ARG A.

(c) MCSUB (%D2., 1, 1)
The value of this function is the first
character of the inserte] aelimiter,.

(A) HCSUB (%A3. %3D3., 1, P3 - TE + 7)

Order of evaluation arg A, arg B, arg C. However, arg C-

System action

is not evaluated if VB (see below) is
greater than L (see below) or is less than
one.

Let L be the numver of characters in ARG A,
let RB be the result of ARG B, and let VB
be derived from these values py the following
rule:

{ RB if RB > Oo
VB = (

(L + RB otherwise

Let VC pe derived from the result of ARGC
by a similar rule. The value of a call of
HCSUB depends upon whether VB and VC describe
a valid substring of ARG A. This occurs if:

1 < VB «VO «Kk b

Wotes

5/26

If this relation dces not hold tne value of

HCSUB is nuli. If the relation holds the value

of MCSUB is the substring of ARG A from character

position VB up to and including character position

vc, the first character of aRG A being taken

as character position ane.

(a) In the case where the relation holds, the

value of MCSUB consists of VC - VB +1

cnaracters.

(b) The value of MCSUB is not itself evaluated.

Thus the value of Example (b) would be

ENT even if ENT was a macro.

5/27

5.4 Further operation macros

The remaining operation mecros, i.e. those not falling

into the previcus categories, are cescribed below.

5.4.1 MCSET

Purpose

Generali form

Examples

Restrictions

System action

Macro-time assionment statemeut.

WCSET arg A = arg B WNL

(a) MCSET P10 = 3

(b) MCSET To = -4

(c) MCSET TT3 = TP4 - 109 + 25/P1

(d) HCSET TSAl.=SAl. + 17
where the value of the inserted argument is

a positive integer.

ARG A must be the name of a macro variable
in the current environment. (ARG A may
contain redundant spaces at the beginning

or the end.) ARG B must be a macro expression.

The resuit of ARG B is assigned to the macro
variable designated by ARG A.

5.4.2 MCNOTE

Purpose

General form

Examples

System action

Notes

5/28

Generation of user's own error and debugging

messages.

MCHOTE arg A WU

(a) MCNOTE %A3. IS ILLEGAL ARGUMENT

(b) MCNOTE OCCURENCE NUMBER $P1. OF <CONT>

ARG A is printed on the debugging file (see
Chapter 6) as if it were a system message.
A newline is inserted in front of it
and it is followed by a printout of the
context of the call of MCNOTE.

{a) If example (9) occurred in line 3 of a
macro CONT, then the printout might be:

OCCURRENCE NUMBER 33 OF CONT
DETECTED Ii |
LINE 3 of MACRO CONT WITH WO ARGUMENTS
CALLED FROM
LINE 267 OF SOURCE TEXT

(b) Notes (d) and (f£) of Section 6.2 do not
apply to the printing of ARG A.

5.4.3 MCGO

Purpose

General forms

Examples

Restrictions

5/29

Macro-time GO TO statement or conditional

GO TO. statement.

(a) MCGO arg A NL

(b) MCGO arg A (IF) arg B (=) gC NL
(UiILESS) (BC) = —

(EW)
(GE)
(GR)

The meanings of the respective mnemonic
second delimiters are:
Belongs to Class, Equals Numerically,
Greater than or Equals and GReater than.

(a) HCGO L1
(b) MCGO LT1

(c) MCGO L6 IF%D1. = +

(ad) MCGO LO UNLESS P3 ~ T5 GE - 6

(e) MCGO L T3 - P7 + 4 UNLESS %A6. BC WN .
This tests whether argument six is a number
(Belongs to the Class of Nimbers).

ARG A must consist of the letter "L" (optionally
preceded by redundant spaces) followed by a
macro expression. The result of this macro
expression must never ke negative and, furthermore,
it must not be zero if MCGO is called from
the source text. If the second delimiter is
BC then ARG C, which is the name of a class,
must consist of one of the following letters:

I (for identifier)
L (for letter)
N (for number)

together with any desired number of spaces. If
the second delimiter is EN, GE or GR then
ARG B and ARG C must both be macro expressions.

Order of evaluation arg B, arg C, arg A. In Form (b),
arg A is evaluated only if the condition
holds.

5/30

System action for form (b) ARG B and.ARG C are compared .to™
yield a true or false value. If the second
delimiter is EN, GE or GR, then numerical
comparison is performed; otherwise character
comparison is performed. The method of
comparison depends on the second delimiter
in the following way:

{a) =. A true value results only if ARG B
and ARG C are identical strings of characters.

(b) BC. If ARG C is the letter I, then
a true value results only if ARG B is
of form:

(letter) *

(digit)

If ARG C is the letter L, then a true value
results only if ARG B is of form:

[letter *]

If ARG C is the letter N, then a true value
results only if ARG B is of form:

[(+) *? | [digit*]
(~)

(c) EN, GE, GR. In these cases a true value
results only if the result of ARG Bis,
respectively, numerically equal to, greater
than or equal to, or greater than the
result of ARG C.

If the comparison yields a false value and the
second delimiter is IF or if the comparison
yields a true value and the second delimiter

is UNLESS, then no further action takes place.
Otherwise the system action for Form (a)
is now performed.

System action for form (a) Let N be the result of the macro
expression in ARG A. If N is positive, then

wi

~

a

pa
r

the point cf scan is changed to the point
associated with macro label N. (See next
Section for a fuller description.) If N
is zero, then processing of the current piece
of text is abandoned and evaluation proceeds
as if the end of the current piece of text
had been reached. Thus wnen N is zero a MCGO
serves a similar function to the RETURN statement
found in many high-level languages. This
"RETURN' facility may be used within inserted
text or replacement text but not within the
source text.

Notes (a) Note that leading and trailing spaces
are removed before arg B and arg C_ are
evaluated. if it is required that these
spaces take part in the comparison, they
should be enclosed in literal brackets,

(>) If it is desired to achieve the effect of
a backward GO TO in the source text then
the required loop must be defined as the
replacement text of a macro call. See
Section 7.4.1 for an example.

{c) Sections 7.3.9 and 7.3.5 contain examples
of the use of HCGO.

(d) The user should be very careful to differentiate
between the two relational operators "="
and EN. Wote that the relation "Pl EN P2"
is true if the first two permanent variables
have the same value whereas “Pl = P2" is,
of course, never true. Note that "%Pl. = %P2."
is equivalent to "Pl EW P2",

5.4.3.1* Exact description of GO TO

The following is a more exact description of the action
of ML/I in performing a GO TO when NW is positive.

If label N, which is called the designated label, is

5/32

present in the current environment then. the action of ML/I
is simply to change the point of scan to the point associated
with the designated label. Otherwise a forward search for the
designated label is performed, starting at the current point
of scan. If a macro call or skip is encountered during this
search, the search is suspended until the end of the macro call
or skip is found. Each time an insert is encountered outside
a call or skip, the argument is evaluated and the search ends
when an insert which "places" label N is found (or, in the error
case, at the end of the current piece of text). No value
text is generated during a search and no macro calis are performed
(except conceivably during the evaluation of the argument of
an insert). At the end of the search the action of ML/I is
concluded by setting the point of scan as the point immediately
after the designated label.

Any labels encountered in the forward
search (including the designated one) are added to the current
environment provided that the rules of Section 2.6.7 (f) are
satisfied.

If an error is detected during a forward search then the
appropriate error message is printed in the normal way.

5.4.4 MCPVAR

Purpose

General form

Example

Restrictions

System action

5/33

Allocation of extra permanent variables.

MCPVAR arg A NL

(a) MCPVAR 100

ARG A must be a macro expression.

Let ne the result of ARG A. If N is
greater than the current number of permanent
variabies then the number of permanent variables
is increased to N ; otnerwise no action is
taken. The values of the new permanent variables

are set to zero and the values of the previously
allocated ones remain unchanged .

6/1

Chapter 6 Error messages

ML/I detects all errors and prints a message at every
occurrence. An error message consists of a statement describing
the particular error that has been detected with a print-out
of the current context. This print-out enumerates all the
macro calls and insertions of arguments or delimiters that
are currently being processed, together with a line number to
indicate the state of the scan in each case. Error messages
are printed on an implementation-defined medium (see Section
4 of relevant Appendix) called the debugging file. This is
normally a printer or on-line typewriter.

6.1 Example of an error message
/ .

An example of an error message is the following. Assume
the user has written:

MCSET Y10 = 56

in the source text. Then the following message would be given:

ERROR(S)
ARGUMENT HAS ILLEGAL VALUE, VIZ "Y10"
DETECTED IN
MACRO MCSET WITH ARGUMENTS
1) Y10
2) 56
CALLED FROM
LINE ... OF SOURCS TEXT

6.2 Wotes on context print-outs

. The printout of the context should be largely self-explanatory
but the following points should be noted.

(a) The line number is one greater than the number of
newlines so far encountered in tne piece of text to which
it refers. Line numbers refer to scanned text, not to value
text.

6/2

(b) If a macro-call or insert straddles more than one
line of text, then the line numbers of both the beginning and
the end of the call or insert are printed (e.g. CALLED
FROM LINES 6 TO 21 OF SOURCE TEXT).

(c) When the arguments of a call are enumerated, the
text of each argument rather than its value is printed.

(d) If a piece of text in an error message consists
of a single layout character, then the corresponding layout
keyword, enclosed in parentheses is used in its place, for
example:

DELIMITER (NL) OF MACRO X NOT FOUND

In addition a null piece of text is represented py (NULL).

(e) Any multi-atom delimiter occurring in an error
message is printed in full. A space is printed between two
adjacent atoms if spaces are permitted between the atoms
(i.e. if WITHS has been used rather than WITH in their definition).

Note (d) above applies to each atom. As an example, a
message involving the multi-atom macro name "wmCSUB(" would
read:

MACRO MCSUB (CALLED FROM ...

(£) There is an implementation-defined number 2N (see
Section 4 of the relevant Appendix) which is the maximum
length of a piece of text tnat can be inserted in an error
message. If a piece of text is too long, the first N-4 characters
and the last W-4 characters are printed, separated by three

dashes and some spaces,

(g) If the text of an error message is about to overflow
a line, then a newline is artificially inserted.

6.3 Comlete list of messages

This Section contains a complete list of all the error
messages produced by iL/I.

6/3

6.3.1 Illegal macro element

rlessage flag number IS ILLEGAL MACRO ELEMENT

Description The number, which is the value of the suoscript
or macro expression. associated with the flag,
is either too large or too small. Alternatively ,-.
macro elements of the type designated oy the
flag do not exist in the current environment (e.q.
there are no arguments or temporary variables
in the source text). So

System action The current operation macro or insert is
aborted.

6.3.2 Arithmetic overflow

Message ARITHMETIC OVERFLOW

Description Overflow has occurred during the evaluation
of a macro expression or subscript. This
message occurs when an attempt is made to divide
by zero. It may also occur under other circum-
stances but these are implementation-defined
(see Section 5 of relevant Appendix).

System action The current operation macro or insert is aborted.

6.3.3 Illegal. input cnaracter

Message TLL&GAL INPUT CHARACTER

Description A character of the source text is not in the
character set of the implementation.

System action The illegal character is replaced by a fixed
implementation-defined character called the
error character (see Section 4 of relevant
Appendix). A typical error character is the

question mark.

6.3.4 Illegal macro name

Message ILLEGAL MACRO NAsiE AFTER WARNING, VIZ ‘atom!’

6/4

Description A warning Marker is.followed, possibly with
intervening spaces, oy the given -atom whicn
is not a macro name (nor the start of a multi-
atom macro mame). If this error occurs within

an argument the above message is printed both
when the argument is Originally scanned and also
each time it is inserted.

System action The warning marker is treated as if it had
not been recognised as an environmental name,
and the atom which follows is treated as if
no waxning marker had occurrec. Thus, for example,
a skip name following a warning marker will
be treated as such.

6.3.5 Unmatcned construction

4

Message DELIMITER name [OR name*?] OF (MACRO) name
(SKIP) 7
(INSERT)

IN LINE number OF CURRENT TEXT WOT FOUND

Description The given construction whicn starts in the given
line of the current piece of text is not complete.
Note that the line number is relative to the
current piece of text. When the error was
detected the scan was searching for the given
cCelimiter (or for one of the given alternative
delimiters). The error is detected only when
the scan reaches the end of the.source text
Or the end of a piece of inserted text or
replacement text.

Possible causes A mismatch of the delimiters of a construction
nested within the given one can cause this
error since delimiter matcning is liable
to get "out of phase" as a result. Alternatively,
an incorrect specification of a delimiter
structure can cause delimiters to be matched
in a way not intended by the user and, again,
the error may ve in a nested construction rather
than in the given one.

System action

6/5

In the call and insert cases, the etfect
is as if the-teat-fxom’ Che macro or insert

name to the current point of scan was deleted.
In the skip case, text skipped over is treated
in the normal way and the skip is artificially
terminated.

6.3.6 Illegal syntax of argument value

riessage

Description

System action

6.3.7 Redefined

ARGUMENT numoer HAS ILLEGAL VALUE, VIZ "value!

The given value of an argument to an operation
macr> or insert has not the required syntax..
For operation macro arguments see appropriate
"Restrictions" subsection of Sections 5.2,
5.3 or 5.4, or if the argument is (supposed
to be) a structure representation then see
Section 5.1.6. For arguments to inserts see
Section 2.6.7.

The current operation macro or insert is
aborted.

label

Message

Description

System action

6.3.8 Undefined

LABEL number. IS MULTIPLY-DEFINED

An attempt has been made to re-define a label
that has already been defined within the
current text.

The new definition is ignored.

label

Message

Description

LABEL number REFERENCED IN LINE number OF

CURRENT TRXT NOT FOUND

A cali of MCGO references an undefined label.
This error is detected when the scan reaches
the end of a piece of text (since it performs
a search for the missing lapel). If any
constructions are unmatched, the message(s)
of Section 6.3.5 are printed with this message.

6/6

Possible causes An. attempted backward .MCGO_in the source text
or an attenpted MCGO from one piece of text
to another can cause this error. Alternatively,
it can be caused by an unmatched construction
within the scope of a forwarad s#iCGO.

System action The effect is as if the designated label had
been found at the very end of the current
piece of text.

6.3.9 Storage exhausted

Message PROCESS ABORTED FOR LACK OF STORAGE: [POSSIBLY
DUE TO other messages? |

Description HiL/I has used up all its availaple storage.
If the current text is the source text then
the following additional information is
given: if there are any constructions currently
unmatched, or if a search is being made for
a label as a result of a forward MCGO, then
the messages of Sections 6.3.5 and 6.3.8
are printed with this message.

Possible causes Storage is taken up by macro variables, by
the name environment, by a macro call or
insert in the source text, and by nested
calls and/or inserts. Hence an unmatched
macro call in the source text or a call with
a very long argument can cause this error.
Alternatively, it can be caused by an endless
or very deep recursive nest, py the name
environment being too big, or by a combination
of all these factors.

System action The current process is aborted.

6.3.10 System error

Message SYSTEM ERROR

Description There has been a machine error, an operating
error or an error in the implementation of ML/I.

6/7

System action The current process is aborted,

6.3.11 Subsidiary message

Message (MACRO) name ABORTED DUE TOC ABOVE ERROR
(INSERT)

Description This messaye occurs as a subsidiary message
every time an error causes the operation macro
or insert currently being performed to be
aborted. Any construction that has been aborted
is given a null value.

6.3.12 Statistics

Typical message AT HND OF PROCESS: number LIWES, number CALLS

Description The occurrence of this message is implementation-
defined (see Section 4 of relevant Appendix).
It is usually printed at the end of a process

and sometimes at intermediate stages as
well. The number of lines of source
text that have so far been scanned, together
with the total number of macro calis performed
(the value used as an initial setting of T2)
is printed.

6.3.13 Implementation-~defined messages

Description ach implementation may have its own particular.
messages. See Section 4 of reievant Appendix
for details.

W/1

' Chapter 7 Hints on using ML/T

7el How to set up the environment

Wnere possible it is best to write all the NEC macro
calis to set up the environment at the start of the source
text. The name environment will normally contain an insert
definition and it is a good idea to define this first. Choose
some atom(s) as the insert name that will not occur naturally in
the source text. Next define skips to cause comments and literals
in the source text to be skipped over. Also define a pair
of literal brackets, again cnoosing atoms that do not occur
naturally in the source text. Thus do not use "<" and ">"
if these symbols are used to represent “less than" and “greater
than". Finally, define the required macros, not forgetting
to enclose arguments in literal orackets where necessary.
It may be useful to have a systematic convention for macro
names, for example starting every macro name with the same
letter. However, due to the randomizing technique used in
the internal working of many implementations of ML/I, it is
not advisable to choose isacro names all of the same length
and all ending with the same character, as this would slow
down execution.

7.2 Possible sources of error

The following Sections illustrate some areas where the
user Of wiL/I should take special care.

7.2.1 Jumping over expanded ccde

if macros are used in an assembly language, great care
must be taken with instructions of the form "jump to location
counter + WwW", since there may be macros within the scope of
the jump which expand into several machine instructions.
The same applies to machine instructions of the form "skip
one instruction". For tnis reason it is helpful to choose
macro names that cannot be confused with the names of machine
instructions.

7.2.2 Generation of unique labels

If a macro generates code which involves an execution-
time label, then a different label must be generated at each

7/2

call of the macro. The technicque-describern.in Section.2.6.8(b)
can be used for this purpose. The same applies, in some cases,
to execution-time temporarv variables.

7.2.3 Lower case letters

Note that in implementations where the character set
includes both upper and lower case letters, only upper case
letters may be used for vocabulary words of WIL/I. This
applies to the names and secondary delimiters of operation
macros, to keywords and to insert flags. Further note that,
for example, "PIG", "Pig" and "pig" are three different atoms.

7.2.4 Use of newlines in definitions

Remember that layout characters within replacement
text are treated like any other characters, They should therefore
be used with great care as they affect the format of the output
text. Thus:

MCDEF LOAD AS <LD>

LOAD X

would generate:

LD &

whereas:

HCDEF STORE

4S <8ST
>

STORE Y

would generate:

ST
X¥

7/3

Morever:

MCDEF JUMP AS

JUMP LB6

would generate:

B
LB6

since JUMP would be defined as a null macro.

7.2.5 Use of redundant spaces

AS a general rule extra spaces are ignored within text
that forms an instruction to HL/I but are treated like any
other character within text that ML/I manipulates.

Spaces may be chosen as construction names, but in any
context where spaces are ignored they are ignored even if
space is a construction name. In particular, spaces are
ignored after warning markers so, when in warning mode, it
is not possible to have a macro name commencing with a space,

Below is a list of some of the places where spaces are
ignored:

(a) At the beginning or end of an argument to an
Operation macro (before evaluation).

(b) Ditto for an argument to a substitution macro,
provided the insert flag B is not used.

(c) After a warning marker.

(d) Within a macro expression (except within variable
names or constants)...

(e) Within the argument to an insert (except within
variable names or constants).

(f) Within the values of those operation macro arguments
that specify options.

7/4

Within structure representations ons or more spaces act as

@ separator.

7.3 Simple techniques

This Section illustrates a few techniques for solving
some simple problems. In general, only one solution is given
but there are often several equaliy good solutions. In some
cases a problem has been described in terms of the use of
ML/I as a preprocessor to a particular languege, but in each
case the problem has counterparts in other applications.

7.3.1 Interchanging two names

Problem it is desired to interchange the names PIG and
DOG in a piece of text.

Solution The complete name environment is set up as follows:

MCSKIP MT, < >
WCDEF PIG AS <<DOG>>
MCDEF DOG AS <<PIG>>

and the desired resuit is achieved by evaluating
the given text under this environment.

Notes (a) In this example there is no necessity to
have an insert definition in the environment.

(b) Notice that two pairs of literal brackets
are used to surround the pieces of replacement
text. One pair is stripped off at definition
time and the second at replacement time.
If the brackets were omitted, ML/I would
endlessly replace one name by the other.

7.3.2 Removing optional debugging statements

Problem It is desired to include a number of extra statements
in a FORTRAN program in order to aid in debugging
its execution. These are to be removed when the
program is debugged. Each statement ends with a
newline. ;

7/5

Solution Some unique atom, say DEBUG, is written.at the
beginning of eacn debugging statement. Before
the FORTRAN program is compiled it is passed
through ML/I. If it is desired to include the
debugging statements then the following skip
definition is placed in the name environment:

MCSKIP DEBUG

This causes each occurrence of DEBUG to be deleted.
When it is desired to deleta the debugging statements
then the following skip definition is used:

MCSKIP DEBUG NL

7.3.3 Inserting extra debugging statements

Problem It is desired in a PDP-7 Assembly Language program
for a particular variable COW, to replace every
occurrence of DAC COW (deposit accumulator at
COW) by a call to a suproutine (which perhaps prints
the value assigned to COW). This cail has form
JMS TYPCOW.

Solution HMCDEF DAC WITHS COW AS <JMS TYPCOW>

7.3.4 Deleting a macro

Problem Tt is desired to delete the macro GONE from the
current environment.

Solution The following skip accomplishes this:

MCSKIP D, <GONE>

Notes {a) The literal brackets prevent GONE peing callea
during the evaluation of the second argument
of the above MCSKIP.

(b) Strictly speaking. the macro GONE is overridden
rather than deleted (see Section 4.7(a)).

FG

7.3.5 Differentiation between special-purpose registers and
storage locations

Problem

Solution

It is desired to define an INTERCHANGE macro for
PDP-7 Assembly Language so that,as well as being
used to interchange the values of two storage location
it can be used to interchange the accumulator with
a storage location. In the latter case "ACC"
is written as the first argument of the call.

Assuming the existence of a MOVE FROM macro, which
moves the value of one storage location into
another, the definition of INTERCHANGE is written:

inCDEF INTERCHANGE WITH (,) WITH NL
AS <MCGO Ll IF Al. = ACC
MOVE
MOVE

MCGO
SLi.
MOVE

>

FROM $A2. TO TEMP; siOVE FROM SAl. TO %A2.;
FROM TEMP TO %Al.;

Lg
DAC TEMPAC

FROM @A2. TO TEMP; MOVE FROM TEMPAC TO *A2.;
LAC TEMP

7.3.6 Testing for macro calls

Problem

Solution

It is desired to find out whether ai: argument of
a macro call itself involves any macro calls,
inserts or skips.

Compare the written form of the argument with
its evaluated form. (It is assumed that any construc-
tion occurring within the argument would cause
these two forms to be different.) The following
is an example of how tne test might be written:

mMCGO Ll IF Al. = SWAl.

Alternativeiy, if it was only required to test
if the argument involved any macro calls, the
test might be written:

MCGC Ll IF .wiCNODEFSAl, = SAl.

nrovided that % had heen defined as an unnrotectcAa
insert.

7/7

7.3.7 Searching

Problem It is desired to search the source text to find
all occurrences of given atoms.

Solution Define macros such as;

MCDEF xX

AS <MCNOTE HERE IS <X>
>

It is best to send the output text itself to a
null channel so that the only printed output
is the MCNOTEH message.

7.3.8 Bracketing within nacro expressions

Problem Parentheses cannot be used within macro expressions.

Solution Use nested inserts. For example to insert the
value of (Pl + 6) / (P3 - 2) write:

$%P1l+0./%P3-2..

7.3.9 Deletion from source text only

Problem It is desired to delete a given atom only if it
occurs in the source text.

Soiution Use temporary variable three, e.g.:

MCDEF X AS <MCGO L@ IF T3 EW 1
SWDG. >

7.4 * Sophisticated techniques

This Section illustrates some techniques which may be

of value to the more sophisticated user.

7.4.1 Macro-time loos

Problem A macro-time iteration statement is required in

order to generate repetitive text.

Solution

Examples

Wotes

7/8

The macro NCFOR defined below serves this purpose.
It allows the.step size to be optionally omitted;
in this case a step size of one is assumed.
MCFOR should be regarded as a "black box" by
the reader who finds the definition below hard
to understand. The part labelled "L2" is to deal
with a negative step size.

MHCDEF MCFOR = OPT STEP N1 OR Nl TO ALL NL REPEAT
AS<MCSET Al. = %A2.
MCSET T3 = 1
MCGO Ll IF Tl EN 4
MCSET T3 = %A3.
HMCGO L1 IF T3 GR G@
$L2. MCGO L@ IF SAT1-1. GR ZAl.
SATL.MCSET @Al. = SAl. + 3
MCGO L2

$L1. MCGO LY IF Al. GR ZATl=1.

HiCGO LL
>

{a) MCFOR Pl = 1 TO 20
JMP LABSPl.
REPEAT

would generate the twenty instructions
JMP LAG1, ... , JMP LAB2C.

(b) MCFOR P6é = 20 STEP - 1 TO 1
JMP LABSP6.
REPEAT

would generate the above twenty instructions
in reverse order.

(c) HCSET P2 = 1
MCFOR Pl = 1 TO 10
3P2.MCSET P2 = P2+P2
REPEAT
would generate the first ten powers of two.

(a) The controlled variable must pe a permanent

7/9

variable. (If it were a temporary variable,
MCFOR would try to use its own temporary
variables rather than those of the calling
environment thus causing an error.)

(>) The initial value, step size, and final value
must be macro expressions not involving tem-
porary variables.

(c) MCFOR is a substitution macro, not an operation
macro.

(ad) Calls of MCFOR may be nested.

(2) MCFOR can be used to perform loops within
the source text, thus surmounting the

restriction that backward MCGOs within
the source text are not allowed.

7.4.2 Examining optional delimiters

Problem An IP macro has form:

(GE)
Ir arg A (GR) arg B THEN ...

(LT)
(=)
(etc.)

Within the replacement text of IF, it is desired
to examine the form of the first delimiter and
go to Li if the delimiter is GE, to L2 if it is
GR,etc. This problem can obviously be solved
by writing a large number of conditional MCGO
statements but this would make the IF macro very

slow and cumbersome.

Solution The various possible delimiters can be defined
as macros thus:

MCDEF GE AS 1

MCDGF GR AS 2

ete =

7/10

and then the requisite switch statement can be
written:

MCGO LSD1l.

Notes (a) The definition of the delimiters of IF as
macros does not affect the scanning of a
call of the IF macro since the use of an atom
as a delimiter takes precedence over its use
as a macro name.

(b) It is necessary to place the definitions of
GE etc. after the definition of IF or else
to enclose the structure representation of
IF within literal brackets.

(c) This technique will not, as it stands, work
for name delimiters. However, see Section
7.4.8.

7.4.3 Dynamically constructed calls

Problem It is required to implement a WHILE macro of form:

(GE)
(GR)

WHILE arg A (LT) arg B DO

(=)
(etc.)

arg C

END -

Witnin the replacement text of this macro it is
desired to call the IF macro with tne first delimiter
of this call of IF the same as the delimiter that
occurred in the call of WHILE. However, as was
seen in Section 3.6, it is not possible to do this
hy writing:

If... @D1l. ... THEN ...

Solution

Notes

T/L

It is necessary to use a temporary macro definition
to build up the text for the required call of IF

and then to call the temporary macro. This could
be achieved thus:

MCDEF <TEMP>AS<IF> ... %WO1l. ... THEN ...
TEMP

(a) WD1l was used rather than Dl since GE etc.

are macros and it is not desired to call

them at this stage.

(b) Note that the insert @WDl. is not enclosed
in literal brackets and is thus inserted when
TEMP is defined. Thus if this delimiter were
GR, then the replacement text of TEMP would
be:

IF ee @ GR oases THEN o@ee

and calling TEMP would then accomplish the
required call of IF.

(c) TEMP is enclosed in literal brackets when it
is defined in case there is already a TEMP macro
in existence. This might arise, for example,
if the WHILE macro was called recursively.

(ad) TEMP should be a local macro rather than a
global one so that the storage it occupies
is released when an exit is made from the
WHILE macro.

(e) This general technique can be used in all cases
wnere it is required to build up a call
dynamically. The next Section contains a further
example of the technique.

7.4.4 Arithmetic expression macro

Problem A macro whose name is "(" has been designed so
that, when supplied an arithmetic expression as
argument, it generates assembly code to calculate
the value of the expression and to place the
resultant value in an accumulator. This macro

Solution

Notes

7/12

WiLL be veferrad +o ag "the parenthesis macro",

A typical call of the parenthesis macro might be:

(PIG +(¥/6)*%Z - 16)

This involves a nested call of the same macro.
The arguments of the outer call are PIG, (Y/6),
% and 16, and the delimiters are +, * and -.
It is desired to use this macro to implement a
SET macro, which allows a macro expression as
argument. Calls of SET might be:

SET DOG XY it
SET VAR i (VAR + 6)/13 - PIG

The solution to this problem is not to give the
SET macro a complicated delimiter structure but
rather to regard it as a macro with two arguments.
The second argument is then passed down to the
parenthesis macro, which breaks it down into
operators and operands. The SET macro is defined:

MCDEF SET = NL

AS <MCDEF TEMP AS <(>%WA2.<)>
TEMP
[instruction to store the result in %al.]
>

(a) Notice the use of TEMP to build up a call
of the parenthesis macro. In the second
of the apove examples of SzT, for instance,
TEMP would be defined as:

((VAR+6) /13 - PIG)

When TEMP was called, it would result in a
call of the parenthesis macro with arguments
(VAR+6), 13 and PIG,

(b) It would have been wrong to call the parenthesis
macro from within SET by writing simply
(3A2.), since this would have been interpreted
as a call with one argument.

7/13

7.4.5 Formal parameter names

Problem

.Solution

It is desired to use the uame TAKRATE for the first
formal parameter of the macro DxeDucT.

The first part of the definition of DEDUCT is

written: ,

MCDEF DEDUCT ... AS <MCDEF TAXRATE AS tAl.

aeo8

Thereafter witnin the replacement text of DEDUCT,
TAXRATE can be written in place of "%Al.".

7.4.6 Intercepting changes of state

Problem

Solution

It is desired in PDP-7 Assembly Language to generate

some decimal constants within the replacement

text of a macro SIZE. However, PDP-7 Assemoly

Language has two statements, OCTAL and DECIMAL,

to control the base to which constants are to

be written, and this might vary between calls of

SIZE. Furthermore, it is desired that a call

of SIZE shouid not change the base behind the

user's back.

A permanent variable, say P10, is used as a switecn,

the value zero being used to indicate an octal

base. The following is written at the start of

the source text:

MCSET P1% = @ ‘

MCDEF OCTAL AS <MCSET P1¢Y = 9g

SWDY. > :
MCDEF DECIMAL AS <MCSET P1g = 1

SWwDG.>

and the definition of SIZE is written:

hCDEF SIZE AS <MCSET Tl = P1g

DECIMAL
*

e

MCGO L@ iF Tl BN 1
OCTAL
>

Note

7/14

thus ensuring that the base is returned to its
original state.

This technique is also useful for the following
problem: the user nas written a macro SUBS to generate
code for subscripted vectors and it is necessary
that SUSS generates different code for the two followin:
calls:

(a) LAc SUBS (V, 1) Load accumulator from element.

(b) DAC SUBS {(V, 1) Store accumulator in element.

The problem is solved by using the above technique
to cause LAC and DAC to set a switch which the
SUBS macro can then test to find out which instruc~-
tion preceded its call,

7.4,7 Remembering code for subsequent insertion

Problem

Solution

It is desired to design two macros, REMEMBER and
INSERT, to enable the user to remember text for
subsequent insertion. These macros are used in
the following way. KEMEMBER is called with a piece
of text as argument. REMEMBER does not generate
any code but remembers its argument for subsequent
insertion. When the INSERT macro is called all
the pieces of text that have been remembered are
inserted.

A sequence of global macros Il, I2, ... IN is
used, the value of N being given by a permanent
variable, say P1%. wach macro represents a piece
of text that is to be remembered. ‘The definitions

of REMEMBER and INSERT would be written:

HCSET P1lg = @g
MCDEF REMEMBER;
AS <MCSET P1@ = P1@ + 1
HCDEFG I$P1@. AS $SAl.
>

MCDEF INSERT AS <MCFOR Pl = 1 TO P1g
RECALL ISPl.
REPEAT>

Notes

7/15

where MCFOR is the macro of Section 7.4.1 and

RECALL is a macro defined thus:

MCDEF RECALL NL
AS <MCDEF TEMP ASZA1.
TEMP >

(a) The above solution tries to minimize the
amount of storage used. It would have been
possible to do without the RECALL macro,
but this would have involved redefining
TEMP N times within the MCFOR loop and so,
albeit temporarily, using up rather more
storage.

‘(b) Wote that the macros Il etc. must be global
whereas the macro TEMP should be local.

(c) An apparently promising technique for this
problem which fails because of excessive
use of storage is the following. The entire
remembered text is maintained by redefining
the INSERT macro as below each time REMEMBER

is called:

MCDEF REMEMBER; AS <MCDEFG<INSERT> AS INSERTSA1.
>

The trouble with this approach is that old
versions of INSERT can never be released,

thus using up a very considerable amount
of storage.

7.4.8 Constructions with. restricted scopes

Problem

Solution

It is desired to assign different meanings to
a macro X within different scopes. One meaning
is to apply within the replacement text of a set
of macros Ml, ..., MN whereas another meaning is

to apply elsewhere.

One solution is to redefine X as a local macro
witnin each of Ml to MN, but this is tiresome if
W is large and slower than the method below even

Notes

7/16

if N is-one. A better solution is to place the
two foliowing definitions at the start of the
source text: —

MCDEFG X ... AS <replacement to be used in Ml to MiN>

MCDEF <X ... > AS <replacement to be used elsewhere>

The second definition overrides the first. Within
the macros Ml to MN the first definition can be
re-incarnated by writing MCNODEF, which deletes
the second definition. Any macros besides X that
were used within Ml to MN should also be defined
as global.

(a) This technique can be used in a variety of
applications. It is the best solution in
almost all situations where a macro or set
of macros has restricted scope, but where
this scope does not consist simply of the
replacement text of a single macro. Even
in the latter case the techniyue is useful
as it is faster than setting up the local
definitions every time a macro is called.

(b) This technique can be used to extend the
technique described in Section 7.4.2 to make
it work for name delimiters. For example,
if a macro had alternative names A and B and,
within the replacement text of this macro,
it was desired to insert the number 206 if
the name was A and the number 15 if the name
was B then this could be achieved, assuming
"%" to be an unprotected insert, by writing:

MCDEFG A AS 206

MCDEFG B AS 15

MCDEF <OPT A OR B ALL ...>AS< ... WCNODEFSDG.

7.4.9 Optimizing macro-qenerated code

Problem

Solution

It is desired to optimize the cude ygonorated by
ML/I, in particular to cut down possible inefficiencies
at the boundary between successive macros.

There are basically two approaches to producing
optimal code:

(a) Code can be optimized as it is produced.
Typically this would involve using the permanent
variables to maintain some sort of indication
of the previous instruction(s) generated.

(b) A second pass can be made through the macro
generated code, to search for various inefficient
sequences of instructions.

Except in simple cases, the second method is usually
the better. Jn many machines consideraple optimization
can be performed by maintaining where possible
an indication of the contents of the accumulator(s)
or other special-purpose registers and thus cutting
out redundant loading instructions. This can ~
be done by defining macros to map into numbers
all the variables used in the code being generated.
A permanent variable, say Pl, could ve used to
indicate whether the accumulator was known to contain
the current value of a particular execution-time
variable. If so,Pl1 could contain the number of
the variable, otherwise it could be zero. Pl
would need to be zeroized when a label was placed,
a subroutine was called, etc. Yhis mignt be
achieved by defining a macro with many alternative
names, covering all the situations where the
accumulator was clobbered. The macro might be:

MCDEF OPT , OR JMS OR ADD. OR ... ALL AS<iiCSET Pl = g
SWDZ. >

7.4.10 Macro to create a macro

Problem Tnis problem illustrates the use of a macro to
set up the definition of another macro. The

7/1e

problem i8 as follows. It is desired to design
a macro HQUATE which equates one vector to part
of another. Thus the call:

EQUATE VECL TO VEC2 OFFS“T 3

would cause each subsequent reference to an element
of VECL, which has form, say:

VEC] (subscript)

to be translated into a reference to the corresponding
element of VEC2, namely:

VEC2 (subscript +3)

Solution MCDEF EQUATE TO OFFSET NL
AS <MCDEFGSA1. WITH() AS$A2, (<%A1.>+%A3.)
>

4 Examples (a) The call:

| EQUATE VECl TO VEC2 OFFSET 3

would be equivalent to writing the definition:

MCDEFG VEC1 WITH() AS <VEC2(%A1.+3)>

Notes (a) The main source of error in this sort of
problem is to confuse the arguments of the
macro that creates the definition with the
arcmiments of the new macro being defined.
The rule is that the latter should be enclosed
doubly in literal brackets. Hence in the
replacement text of EQUATE, the arguments
within single literal brackets are the arguments
of EQUATE, which are inserted when the new
macro is defined, and the argument within
double literal brackets is the argument
of the new macro, which is inserted when

the new macro is called.

S/l

ML/I User's Manual 4th Edition

Supplement 1: startlines and stop markers

This supplement describes two new features that have been
recently added to ML/I. The features are available in version AIC
of ML/I. For those interested in how these features are implemented
a separate document is available.

New feature 1: startline

t is often useful, when processing text where a line is a
logical entity (e.g. as in most assembly languages and some high-
level languages), to define newline as a macro name. This causes
subsidiary problems because

(a) the first and last line of the text need to
be treated specially.

(b) as well as being a macro name, newline may
also be a closing delimiter.

To remedy this, ML/I contains a new feature whereby the
input routine can be made, on option, to insert an invisible layout
character called "“startline" at the start of each line of text.
The option is controlled by the variable Sl: if Sl is one, startline
characters are inserted; if Sl is not one, they are not. Initially
Sl is zero. ML,I treats startline like any other layout character.
Its layout keyword is SL.

Startlines are ignored in the output text from ML/I. How-
ever they are not ignored in value text and the user is recommended
to set Sl to one after his macros have been read in. (One reason
for this is illustrated by the following example:

MCDEF TEST OPT ; OR N& ALL

AS < MCGO LI IF $WD1l,=<

>

If Sl was one while this macro was being read in, then a startline
would appear before the ">" character. In this case the test after
the IF, which should test if delimiter one is a newline, would in
fact test if delimiter one was a newline followed by a startline.
The test would therefore always fail.) If, as is very often the
case, Startline on its own is a construction name, the above
recommendation is virtually imperative.

8/2

Since startlines are invisible on a listing, any
occurence of a startline in an error message is renlaced by
(SL).

i all labelled statements
in an assemoiv lancuace program. It is assumed the assembler is
such that statements area one to a line and a line is labelled Lf
the first character is mot a snace.

MCSKIP SL “ITH SPACE NL

MCDEF SL NL

8/3

New feature 2: stop markers

An annoying feature of previous versions ML/I was that
if a delimiter of a macro call in the source text was. accidently
omitted or wrongly specified, then the remainder of the source
text might be scanned over in searching for the missing delimiter.

To remedy this, ML/I now contains a new construction
called a stop marker. Stonm markers are defined by means of the
operation macro MCSTOP, which has a similar syntax to MCNARN.
Stop markers are only recognized when ML/I is searching for a
delimiter of a construction in the source text. Outside of this
context, stop markers are not part of the environment. If it
encounters a stop marker, ML/I gives a message to signal that the
current construction(s) are unmatched. The text from the construction
name up to (but not including) the stop marker is ignored, and scan-
ning is resumed at the stop marker itself. For example if the source

text read:

MCDEF IF THEN NL

AS< ... >

-MCSTOP NL

IF X = Y THIN GO TO 2

ML/I would take the final newline as a stop marker and ~~ would give
the error message

DELIMITER THEN OF MACRO IF IN LINE ... -NOT FOUND

Stop markers obey the normal rules for name clashes (see
Section 4.6 of User's Manual). Hence if, in the above example,
THIN were replaced by THEN, then the final newline would be treated
as a delimiter of IF rather than a stop marker and there would be
no error message. An implication of this is that if the following
cefinition were added to the above text

MCSKIP Dt,COMMENT NL OPT NL Nil OR; ALL

then COMMENT XXX

YYY

i aa

would not cause an error since all newlines would be treated as

S/4

delimiters, not stop markers. In-general, therefore, it is possible
(though tortuous in all but the simplest cases) to. define construc-
tions that may be arbitrarily long even if stop markers have been
defined,

Note that stop markers override the normal scope rules in
that they are recognized within skips and within. straight-scan
macros. They are treated as local constructions. (There is no
MCSTOPG.)

Stop markers will stop forward MCGOs in the source text,
as well as unmatched constructions,

Experience with stop markers has shown that in 9 out of
10 applications of ML/I it is a good idea to include

MCSTOP NL

in the environment. It is best to make this the last definition
since calis of MCDEF may legally straddle several lines.

P.J. Brown

July, 1971.

S/6 _—

“ML/I User's. Manual 4th. Edttton

controlled line numbers and optional ”
warning markers . _

Supplement 2:

This supplement describes two new features that have
been added to ML/I. The features are available in version 2ID of
IiL/I. For those interested in how these features are implemented
a separate document is available.

New feature 3: controlled line numbers.

In many uses of ML/I some predefined macros are applied
to a piece of text. If errors cccur, the line numbers in the
error messayves do not correspond to a listing of the text being
processed. For example if the macros cccupy 93 lines then ML/I
takes the first line of the text to be processed as line 394.
This can be very confusine tc a user of a package of macros that
is unknown to him.

To remedy this, the source text line number has been
made accessible to the user by placing it in $2.

S2 is initially 0 and ML/I increases it by one at the
start of each line of the source text (including the first), and
assigns the new value of S2 to-ML/1l's internal line count that is

used in error messages.

Writers of packaces of macros should, at the end of
their macros, reset S2 to zero (or whatever value makes the first
line of the text to be processed line one - differences can occur
when newline is part of a construction nare as FL/I is sometimes

looking ahead). .

The value of S2 is also useful for cther purposes, e.a.
for generating unicue labels or for use in comrents in generated
output.

New features 4: optional warning markers

If $3 is one, the error message that is normally given
if a warning marker is not followed hy a macro name is suppressed.

This is useful if macro calls in the source text are
only to be recognised in certain positions, e.g. following a tab
or at the start of a line. In such examples the characters tak
or startline could be Cefined as warning markers, and, assuming
that not all occurrences need to be followed by macro calis, S3

could be set to one.

Mote tnakt if a warning marker is not followed hv a macro
name it is treated as if it were not acnstruction name at all and
is thus normally conied over to the value text. This avplies
irresnectivea of whether S3 is being used to supnress the error
message.

The followine examole illustrates how optional warning
markers work-

MCDEF PIG AS POG
MCINS $%.
MCSET S3=1
MC'ARN +
+PIG,PIG, MCSET+%S 3. +NOTMAC+++

would generate the value text

POG, PIG, MCSET+14+NOTMAC+++

S/7

Wu/l User's Manual 4th Mdaition

Sumplement 3: An extra ontion

This supplement describes a new feature that is available
in version AIF of "L/I.

New Feature 5: option on_HCNOTE

T£ $4 has the value one, MCYOT" suppresses all the
contextual information it normally gives. Ril that is output
is the value of the argument of MCOTF, vorececded and followed
hy a newline. For example

Mesntr f4 = 1
MCMOTR *ESS 1
MCHOTE ERRO™ IM LINE $82.

would produce the message

MESS 1

BPPAR IN LINE .eeces

TE 84 has value zero the normal contextuai information is

printed.

iNDEX/1

I

A (as insert flag) 2/14
ALL 5/6

Ambiguous name 4/6
ARG 5/1

arg 5/1
Argument 2/3
Atom 2/2

B(as insert flag) 2/14
Branches 5/6

Call (of macro) 2/3
Call by name 3/1
Capacity 2/7, 2/10, 5/17
Character set 2/1
Clashing names 4/6
Closing delimiter 2/3
Construction 2/12
Current environment 2/1
Current point of scan 3/1

D (as insert flag) 2/14
Debugging file 6/1
Definition time 4/3
Delimiter 2/3 et seq
Delimiter option (on skip)

2/18, 3/15
Delimiter structure 2/5,

et seg
Dynamically generated

construction 3/6

5/2

Environment 2/1, 2/22, 3/1
Error causes 7/2
Error messages 6/1 et seg
Errors in structure

representations 5/11
Evaluation 2/1, 3/1 et seg
Examples (conventions used)

2/23
Exclusive delimiters 3/4, 5/8
Expressions (macro

expressions) 2/11

°
>

s
e

»
cf

s
e

s
e

°
e

.
e

*
e

°
t

e
e

a
e

*
*

a
?

°
s

e
cd

e
*

e
*

a
e

°
®

»
s

Ly

s
.

WDE X

Flag (for insert) 2/14
Free mode 2/21

Global construction 4/3
Global name environment 4/4

Initial environment 4/3, 4/4
Insert 2/9 et seg, 5/14
Insert name 2/13
Inserted text 2/14

Keyword 5/3

Label 2/12, 5/31
Layout keyword 5/3, 5/23
Literal brackets 2/20, 4/2
Local construction 4/3
Local name environment 4/4

Macro

Macro

Macro

Macro

2/2 et seq, 5/17
call 2/3
element 2/13
expression 2/11

Macro label 2/12, 5/31
Macro name 2/3
Macro~time statement 2/8
Macro~time variable 2/8, 2/9
Matched (opticn on skip) 2/18,

2/19, 5/15
MCALTER 5/21
MCDEF 5/17
MCDEFG 5/20
MCGO 5/29
MCINS 5/14
MCINSG 5/20
MCLENG 5/24
wMCNODEF 5/19
HCNOINS 5/19
MCNOSKIP 5/19
MCNOTE 5/28
MCNOWARN 5/19
MCPVAR 5/33
MCSET 5/27

INDEX/2

MCSKIP 5/15
MCSKIPG 5/20
MCSUB 5/25
MCWARN 5/13
MCWARNG 5/20

NY (node zero) 5/8
Wame clash 4/6
Name delimiter 2/3
Name environment 2/22
NEC macro 4/3
Nesting 3/1
Wewline 2/1, 7/2
NL 5/4

NL 1/3
Node 5/6 et seg
Normal-scan macro 2/22
Notation 1/3, 5/1

Operation macro 4/1
OPT 5/6

- Optional delimiter 2/5
OR 5/6
Output text 2/2 >
Overflow 2/12

Permanent variable 2/10
Process 2/2
Protected insert 2/13, 4/5
Punctuation character 2/1

Recursion 3/1
Repeated delimiter 2/5
Replacement text 2/3

Scanned text 2/1, 3/1
Scanning 3/2
Secondary delimiter 2/3
Skip 2/17 et seg, 5/15
Skip name 2/18
Source text 2/2
Space character (use of) 7/3
SPACE 5/3
SPACE 1/3
SPACES 5/4

Straight skip 2/19
Straight-scan macro 2/22 e

°
°

*
e

e
a

o
°

se

»
*

*
e

LJ

ca

es

e
°*

.
e

.
e

e
s

s
°

es

e
s

e
»

a
e

a
s

°
°

°
a

.
e

e
s

°
e

° Structure representation
5/2 et seg

Subroutine 2/8
Suoscript 2/11
Substitution macro 4/1
Successor 2/5
Syntax (for describing

ML/I) 1/2
System function 4/1, 5/24
System variable 2/10

Tab 2/1
TAB 5/4
TAB 1/3
Temporary variable 2/10
Text 2/2
Text (option on skip) 2/18,

5/15

Unmatched construction 3/3
Unprotected insert 2/13, 4/5

Value text 2/1
Variable 2/68

WA (as insert flag) 2/14
Warning marker 2/21, 5/13
Warning mode 2/21
WB (as insert flag) 2/14
WD (as insert flag) 2/14
WITH 5/2

WITHS 5/2

